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Abstract

This paper discusses a Finite Element approach for volumetric soft tissue modeling in the context of facial sur-
gery simulation. We elaborate on the underlying physics and address some computational aspects of the finite
element discretization.

In contrast to existing approaches speed is not our first concern, but we strive for the highest possible accuracy
of simulation. We therefore propose an extension of linear elasticity towards incompressibility and nonlinear
material behavior, in order to describe the complex properties of human soft tissue more accurately. Further-
more, we incorporate higher order interpolation functions using a Bernstein-Bézier formulation, which has
various advantageous properties, such as its integral polynomial form of arbitrary degree, efficient subdivision
schemes, and suitability for geometric modeling and rendering. In addition, the use of tetrahedral Finite Ele-
ments does not put any restriction on the geometry of the simulated volumes.

Experimental results obtained from a synthetic block of soft tissue and from the Visible Human Data Set illus-
trate the performance of the envisioned model.

Keywords: Physically Based Modeling, Finite Element Methods, Facial Surgery Simulation, Facial Modeling,
Maxillofacial Surgery, Bernstein-Bézier, Soft Tissue.

1. Introduction

1.1. Motivation

Maxillofacial surgery and craniofacial surgery take care of
a great variety of diseases of the whole face and skull, i.e.
fractures, tumors, infections and malformations. Fractures
of craniofacial bones have to be repositioned and fixed and
a wide spectrum of facial and craniofacial malformations
(e.g. figure 1) have to be treated. Some of the patients show
only minor asymmetries, e.g. of the mandible and chin and
hence seek for treatment. Others show more deformed faces
due to inherited syndromes, e.g. Crouzon-Syndrome,
Apert-Syndrome etc. or as a result of congenital diseases
without inheritance (e.g. hemifacial microsomia). Other
malformations comprise acquired diseases during child-
hood or adolescence (e.g. reduced growth of a jaw after
trauma to the temporomandibular joint, i.e. the jaw-joint).

All these categories of diseases result in facial asymme-
try or disfigurement. In addition to the general impairment
of their health patients with these diseases suffer a great

deal from their facial deformities. Since the human face
plays a key role in interpersonal relationships it is essential
not only to cure the underlying disease but also to predict
the post-surgical morphology and appearance of the face. It
is obvious that this is a critical issue for patients with facial
deformities. Moreover, cranio-maxillofacial surgery has to
strive for reconstruction of a balanced face. Even very sub-
tle malformations of facial proportions can strongly affect
the appearance of a face and determine on aesthetic aspects
such as individual beauty [10].

Therefore, surgeons often face the problem of predict-
ing a fair facial surface before the actual surgery is carried
out. Figure 1 illustrates a typical malformation of a female’s
face and its correction by surgery. Normally, the planning of
a maxillofacial surgical procedure is done by means of lat-
eral X-ray images thereby predicting the 2D appearance of
the postsurgical profile. Lateral X-ray images illustrating
the actual and postsurgical profiles are presented in figures
1b and 1d respectively. It is clear that both surgeons and
their patients have a strong demand for a method which
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enables them to compute highly realistic 3D pictures of the
postsurgical shape. Any computation should be based on
data available, or at least easy to obtain from the patient,
e.g. CT or MRI scans in combination with laser scans of the
surface. Obviously, the model has to capture the most
important anatomical and mechanical parameters of the
face in order to predict accurately the facial shape.
Although various approaches to this problem can be found
in literature, a satisfying solution does not exist yet. Con-
trary to existing approaches [3, 4, 12, 13, 15], which mostly
aim at real-time application, a face model suitable for our
purpose has to base on more sophisticated Finite Element
modeling, where true volumetric soft tissue models have to
be combined with accurate geometric models of facial sur-
face and individual skull.

1.2. Previous Work

Many approaches to facial simulation are based on surface
models. Early works such as [19] restricted themselves to
pure geometric deformations, mostly carried out directly on
parametric surfaces. However, with physically based mod-
eling paradigms, more realistic facial models arose, first
based on mass spring systems and finite difference schemes
(see e.g. [22]), later applying the Finite Element Method
(FEM) for the solution of the inherent partial differential
equations (see e.g. [5]). The common aspect of these mod-
els is the minimization of an energy functional of an elastic
body subjected to deformation.

Koch et al. developed a surface based Finite Element
approach which yielded very promising results both in the
field of surgery simulation [15] and facial animation [14].
They approximated the volumetric behavior through a
spring mesh connecting the thin plate spline surface to the
skull. Lee et al. [17] presented a realistic model for facial
animation which was based on prism elements combining
the facial surface with a layered synthetic tissue model.
Both, Koch and Lee, took into account anatomy and imple-
mented an elaborate model of facial skin layers. Although
both models have proved very powerful in the context of
animation the lack of accurate volumetric physics dimin-
ishes their value in the field of surgery simulation.

Therefore, we focus our attention on volumetric models
which implement as closely as possible the true behavior of
tissue and skin. Keeve et al. introduced a computer-aided
surgical planning system, first using a mass spring tissue
model [12] and later incorporating linear prism
elements [13]. Both approaches made use only of linear
interpolation within the elements, and restricted themselves
to linear elasticity in the implementation. The use of linear
interpolation calls for a higher subdivision in order to reach
the accuracy required in surgery simulation. This is a conse-
quence of the fact, that convergence of Finite Element solu-
tions can be achieved either by successive refinement of the
mesh, or by increasing the polynomial degree of the inter-
polation on a fixed mesh. Furthermore, the use of prism ele-
ments restricts the geometry of the volume to shell-shaped
structures.

In 1994, Morten Bro-Nielsen introduced the modeling
of elastic solids using active cubes [3]. The approach com-
bined snake-like feature extraction in CT data sets with
energy minimization, but did not achieve the precision
required for surgery simulation. In 1996, he presented a
promising approach designed for real-time application,
which modeled both linear elasticity and dynamic behavior
using Finite Elements [4]. Aiming at real-time simulation,
he again had to restrict himself to linear Finite Elements.

In the following paper we present a versatile framework
for the Finite Element simulation of soft tissue for the appli-
cation in facial surgery simulation. Our major contribution
is the incorporation of higher order polynomial interpola-
tion functions using a Bernstein-Bézier formulation, on the
one hand, and an extension towards incompressible and
nonlinear material behavior, on the other hand. In contrast
to prior approaches we strive for accuracy instead of speed,
and therefore accept higher computational costs. We take
into consideration aspects both of underlying physics and of
Finite Element discretization, and give some insight into the
implementation of a prototype system. In order to be as
general as possible from a geometrical point of view, we
use Finite Elements defined over tetrahedra. This enables us
to use arbitrary tetrahedralizations such as those presented
in [21].

The outline of the paper is as follows: For reasons of
readability, Section 2 deals with different aspects of the
underlying physics, such as linear vs. nonlinear elasticity
and incompressibility as well as some adaptations for our
application. Section 3 discusses the solution strategies, i.e.
the Finite Element discretization and the Bernstein-Bézier
approach, and gives an idea of the implementation of the
system. Results on synthetic data and on the Visible Human
Data Set [18] are given in Section 4.

2. Underlying Physics

The analysis of soft tissue requires the idealization of tissue
into a form that can be solved, the formulation of the math-
ematical and physical model, and the interpretation of the
results. In our approach to soft tissue simulation we think of
tissue as being elastic and therefore base on the theory of
static elastomechanics. As for all continuous-system math-
ematical models, the governing differential equations must
hold throughout the domain of the system.

Figure 1: Example of a facial disharmony and its correc-
tion by maxillofacial surgery.
a) Presurgical facial shape contour (profile)
b) Presurgical lateral X-ray image
c) Postsurgical appearance after maxillofacial procedures
d) Postsurgical lateral X-ray image

a b c d
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In order to derive the governing differential equations,
we follow thevariational approach, which essentially cal-
culates the total potentialΠ of the system – thefunctional
of the problem – and invokes the stationarity ofΠ, i. e.

, which is equivalent to finding the configuration
of minimal potential energy. In elastomechanics the poten-
tial Π can be regarded as the elastic energy of the body
minus the work done by externally applied forces. In the
following sections we will first discuss linear elasticity and
then go on to incompressible materials and nonlinearity.

2.1. Linear Elasticity

We think of an elastic body as the domain in the
fixed coordinate systemX, Y, Z(see figure 2). The surface
of the body is partly supported on the area with pre-
scribed displacements . In addition, the body is sub-

jected to externally applied forces . The
forces together with the prescribed displacements yield a
displacement field within the body which we denote by

(1)

with on . The displacement field itself yields
correspondingstrainsε [1, 23]

(2)

where

(3)

with as volumetric straincomponents
and asdeviatoricor shear straincom-
ponents.

The state ofstressτ at an arbitrary point withinΩ can
be described as

. (4)

In analogy to the strain components,
describe thenormal stressesin the coordinate directions
whereas denoteshear stresses. Assum-
ing linear behavior we find for isotropic bodies the follow-
ing linear relationship between stress and strain:

. (5)

In (5), often referred to as theconstitutive relationbetween
stress and strain,C denotes the stress-strain material matrix

(6)

which can be derived using the generalized Hooke‘s
law [20, 23].E andν denoteYoung’s modulusandPoisson’s
ratio respectively. The magnitude ofE controls the stiffness
of the material whereas measures its incom-
pressibility. For we obtain total incompressibility
which obviously cannot be handled by (6). The correspond-
ing reformulation of the problem will be discussed in Sec-
tion 2.2.

In essence, the problem can be formulated as follows:
Given the geometry of the body, the loadsf, the boundary or
support conditions , and the stress-strain relation of the
material, calculate the displacement field within
the body.

As mentioned above, the solution to the problem is the
configurationu which minimizes the potential energy of the
system. For linearly elastic materials we obtain the potential
Π as the difference of the elastic energy within the body and
the work done by externally applied forces:

. (7)

The principle of virtual work, or in terms of the Finite
Element Method theprinciple of virtual displacements,
states that the equilibrium of the body requires the equiva-
lence of the total internal and external virtual work done by
any imposed small virtual displacement satisfying the
boundary conditions:

(8)

The overbars onu and ε denote virtual displacements
and corresponding virtual strains respectively.

The equilibrium equation (8) can be obtained by invok-
ing the stationarity of(7) (for a proof see e.g. [1]).

Figure 2: General three-dimensional elastic body
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2.2. Incompressibility

It is reasonable to think of human tissue as being almost
incompressible because of its high water content. For the
analysis of such media the pure displacement-based
approach described in the previous section is not sufficient.
We therefore employ a so-calledmixed formulationwhich
is far more efficient and can be thought of as a special case
of theHu-Washizu variational principle (see [1, 24]).

As it is difficult to predict accurately the pressure in the
analysis of incompressible media, the key idea of the mixed
formulation is the introduction of pressure as an additional
variable. Assuming almost incompressible behavior, we can
think of the volumetric strains being small compared to the
deviatoric strains, and therefore reformulate the constitutive
relation using indicial notation in the form

(9)

where denotes the Kronecker delta,κ is thebulk modu-
lus

(10)

andG is theshear modulus

. (11)

We thereby separate the volumetric strain ,

, (12)

and the deviatoric strain components ,

. (13)

For the pressure in the body we have

(14)

where

. (15)

By gradually increasingκ (which means that the Pois-
son ratioν approaches 0.5) the volumetric strain drops to
zero. Using (9) and (14), the stress components become

. (16)

For totally incompressible media, the displacement
boundary conditions must be compatible with the zero
volumetric strain throughout the body. Further, in order to
compute a unique solution, the pressure must be defined at
some point in the body.

We consequently have to work with the unknown dis-
placementsu and the pressurep as solution variables when
using a mixed formulation. The principle of virtual work
converts to

(17)

with the deviatoric stress vector ,

, (18)

and the deviatoric strain vector ,

, (19)

whereδ is a vector of the Kronecker delta symbol.

In (17) we have separated the volumetric and deviatoric
strain energies. The connection between the independent
variablesp and u is provided by (14) written in integral
form

. (20)

2.3. Nonlinear Extensions

The above-mentioned procedures apply only to linear prob-
lems where the responseu is a linear function of the applied
loads.This is a consequence of the following three assump-
tions:

• Small displacements/small strains
The displacementsu and the resulting strains must
be small because all integrations are performed over
the original volume. Further, in (12), we linearly
approximated the volumetric strain which, in fact, is
a nonlinear expression of type

• Linearly elastic material
The constitutive relations derived above only reflect
a linear relationship between stress and strain.

• Boundary conditions remain unchanged

In order to solve problems where at least one of these
conditions is not met we have to elaborate on nonlinear
schemes, which are still subject to extensive research activi-
ties in applied mechanics and material science.

Biomechanical studies have shown a highly nonlinear
elastic response and hardening effects of facial tissue [2,
11]. We restrict ourselves to the static analysis of a nonlin-
ear stress-strain relationship, still assuming small displace-
ments and small strains (see figure 3). This enables us to go
on working with the engineering strains defined
by (2) and (3) instead of using total or updated Lagrangian
formulations together with appropriate strain measures and
the corresponding stress tensors (for a survey see [1]).
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and corresponding strains as variations and , we
have for the equilibrium condition of the body at time

. (21)

In a static time independent analysis, the step-by-step
incremental solution reduces to a one-step analysis if the
total load is applied at once. However, for computational
reasons, the analysis of such problems frequently requires
an incremental solution where the variablet denotes a num-
ber of loading steps to reach the total applied load.

As

(22)

we are left with the problem of defining the entries of the
stress-strain material matrixC, . In order to
achieve the desired nonlinear behavior of increasing stiff-
ness with increasing strain we state Young’s modulus as a
function of the strain:

(23)

with denoting Young’s modulus for the relaxed material
andA serving as a measure of nonlinearity. For vanishing
strains and for , (23) is equivalent to the linear case.

Note, that (23) relates to 1D problems, that is, we need
a scalarε representing the actual strain. To this aim we
defineε in (23) either using the Frobenius norm of the
stress tensor or the arithmetic mean of the magnitude of
the tensor entries:

. (24)

Note furthermore, that volumetric formulations of (23)
are extremely difficult and open research issues [2].

Due to its nonlinearity, (21) will have to be solved
approximately by referring all variables to a previously cal-
culated known equilibrium configuration and subsequent

linearization of the resulting equation. From (21), this
results in

. (25)

The integral term denotes theinternal vir-
tual work which results from the actual physical stresses

at timet. Assuming that the approximate displacements
and corresponding strains and stresses at time have
been calculated according to (25), we can now define the
error due to linearization as theout-of-balance virtual work,

. (26)

Therefore, in general, an iteration of (25) will be neces-
sary to minimize the error (26).

3. Solution Strategies

In order to solve the above equations efficiently we employ
the Finite Element method. In this section we describe the
discretization process and discuss the shape functions we
use. A short glimpse at the implementation concludes the
section.

3.1. Finite Element Discretization

The discretization in FEM consists of two main aspects:
Firstly, the domain of interest is subdivided into a finite and
disjoint set of primitives, so-calledFinite Elements, and
secondly, we expand the solution within an elementm as a
weighted sum ofn basis orshape functions . This process
is known asGalerkin projection:

. (27)

We can therefore state the displacement field within the
elementm as

(28)

where denotes thedisplacement interpolation matrix
and contains the 3n nodal weightsto the basis func-
tions. The three spatial components of the displacement
field are interpolated according to the structure of and

:

,

. (29)

Consequently, we have for the interpolation of the ele-
ment strains

(30)

Figure 3: Nonlinear stress-strain relationship
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ûx0
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with the strain interpolation matrix corresponding
to (3)

. (31)

Note specifically that contains first order deriva-
tives of the shape functions.

Using (28) and (30) for the interpolation of the virtual
displacement and virtual strains respectively, we can rewrite
the principle of virtual displacements (8) as

(32)

where and are vectors containing all3N nodal
weights of an element assemblage with a total ofN nodes
and , , and are matrices of corresponding
size which are zero everywhere except at the places which
correspond to the weights of elementm.

Applying the principle of virtual displacement3N times
using unit virtual displacements for all components of
yields the governing system of linear equations

, (33)

where . In (33),K denotes the symmetric positive-
definiteglobal stiffness matrix

, (34)

R theglobal force vector

, (35)

and U the unknowndisplacement vector. The summation
signs in (34) and (35) can be regarded as the so-called
assembly of the local stiffness matrices

and the local force vectors
into one global matrix and vector respec-

tively.

The interpolation of the displacements remains the
same in the case of incompressibility, whereas the strain has
to be separated into volumetric and deviatoric part

(36)

and the pressure is interpolated according to

(37)

where  denotes the pressure interpolation matrix

. (38)

As can be seen from (38), the basis functions for the
interpolation of pressure do not necessarily have to be the
same as for the interpolation of the displacements.

The structure of the resulting system of linear equations
consequently becomes

(39)

with the partial stiffness matrices

(40)

and the corresponding interpolation matrices

. (41)

The partial stiffness matrices (40) can be found by sub-
stituting (28), (36), and (37) into (17) and (20). The deviato-
ric stress-strain relational matrix follows from (16) to

. (42)

For the incremental step-by-step solution in the nonlin-
ear case we are left with the problem of finding the state of
equilibrium of a body at time assuming a known
configuration at timet. The equilibrium at timet is equiva-
lent to a vanishing out-of-balance virtual work in (26) and
can be expressed as
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Û
T

B m( )TC m( )B m( )
V

m( )
d

V m( )
∫

m
∑ Û Û
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Û Û
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=

p
m( )

x y z, ,( ) H p
m( )

x y z, ,( )p̂
m( )

=

H p
m( )

H p
m( )

hp0
…hpk=

K uu K up

K pu K pp

û
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where the vector lists the externally applied forces
at time ,

(44)

and thestress load vector lists the nodal point forces
that correspond to the element stresses at time ,

. (45)

Since the solution at timet is known, we can calculate
the increment to the solution after a suitably small time
increment  using

(46)

whereF is the increment to the stress load vector corre-
sponding to the increment in element displacements and
stresses from timet to time . This vector can be
approximated using atangent stiffness matrix which
corresponds to the material conditions at timet,

(47)

whereU is an incremental vector to the displacements at
time t and

. (48)

Substituting (47) and (46) into (43) yields the matrix
equation corresponding to (25)

, (49)

and by solving forU we can calculate an approximation to
the displacements at time ,

. (50)

Due to the approximation in (47), we cannot use the
result of (50) for the computation of the strains and stresses
at time and proceed to the next time step. Depending
on the size of time steps, such a solution might be very
unstable and lead to significant errors. We therefore have to
iterate the solution of (49) until the condition (43) is met to
a sufficiently accurate extent.

The widely used iteration methods in Finite Element
analysis are based on the classicalNewton-Raphson
technique [1]. That is, having calculated an increment to the
total displacement vectorU, we can use this vector instead
of the vector known from timet to calculate the stress load
vector and the tangent stiffness matrix. This results in the
following nested iteration, for ,

(51)

with the initial conditions

. (52)

The iteration of (51) is continued until the out-of-bal-
ance load vector gets very small and
therefore the increment in the nodal point displacements

 meets a convergence criterion as for instance

. (53)

As it is very expensive to evaluate the tangent matrix
at every step of the iteration, it may be more

efficient to evaluate a new tangent stiffness matrix only at
the beginning of each load step (modified Newton-Raphson
iteration).

3.2. Bernstein-Bézier Shape Functions

So far, we have not made any assumptions about the kind of
elements used in the discretization. In this section we will
introduce the notion oftetrahedral Bernstein-Bézier ele-
mentswhich means that our interpolation scheme employs
Bernstein polynomials defined over the elements of an
irregular tetrahedralization.

Bernstein polynomials are defined over localbarycen-
tric coordinates . The interpolation of the
element geometry is of the form

(54)

with . We employ asubparametric
formulation using a linear interpolation of the geometry
because of the assumption of small displacements and the
linear tetrahedralization. Every point within the tetrahedron
is therefore defined by

(55)

with and denoting the corner
vertices of the tetrahedron.

In order to evaluate the strain interpolation matrix (31)
we need derivatives of element displacements with respect
to the global coordinates. The relation ofX, Y, Z to

 derivatives is given by the Jacobian as

 with . (56)

The Jacobian and its inverse are constant because of the
linear interpolation (55).
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Using Bernstein polynomials, the weights of the Galer-
kin projection we are solving for can be regarded as Bézier
control vertices. Barycentric tetrahedralBernstein polyno-
mials of degreen are of the form [8]

.(57)

The correspondingBézier patch is defined by

(58)

where denote the control vertices of the patch.
Figure 4 depicts the control nets of linear, quadratic, and
cubic tetrahedral Bézier patches and three triangular cubic
Bernstein polynomials.

In summary, the use of Bernstein-Bézier based FEM
has the following advantages:

• Suitability for geometric modeling
For years, Bézier surfaces and volumes have proved
their suitability for CAGD [9, 8]. Their formulation
is well-studied and the inherent endpoint interpola-
tion lends itself well to Finite Element modeling.

• Integral polynomial form of arbitrary degree
• Analytical derivatives and integrals

For integral polynomial functionsf, the integral
over the tetrahedral domain

can be evaluated analytically using a closed for-
mula. This considerably speeds up the computation
of the local stiffness matrices and force vectors.

• Fast subdivision
The well-knownDe Casteljau algorithm[9] can be
used both for the visualization of the resulting sur-
face and for fast subdivision and refinement
schemes, such as a progressive refinement of the
solution (see figure 5). The right superscriptn of the
control vertices in figure 5 denotes the Bézier net
aftern De Casteljau steps.

3.3. Implementation

We have implemented a C++ prototype embedded in AVS/
Express, which allows to perform all the various types of
computations outlined above. In Section 4 we will show
results of some comparisons.

The calculation of the local stiffness matrices is done
analytically when assembling the global matrix. The corre-
sponding code was generated by Maple.

In order to solve the system of linear equations we
either use a conjugate gradient solver with incomplete
Cholesky preconditioning [6, 7] or an LU decomposition
[16] for the indefinite matrices arising from totally incom-
pressible materials.

4. Results

The implementation offers a great choice of possible simu-
lation types. We can interpolate to a lower or higher degree,
choose between compressible and incompressible media,
and perform linear or nonlinear calculations. In order to
evaluate the various aspects and parameters of the presented
model we first experienced the system on a synthetic block
of soft tissue. In addition, we simulated lower jaw bone sur-
gery on the Visible Human Data Set [18].

4.1. Experiencing the System

As a first comparison we want to examine the effect of the
degree of interpolation on the outcome of the simulation. To
this aim, we regularly subdivide a block of elastic soft tis-
sue into tetrahedra. This block is fixed at its lower corner
nodes and exposed to a vertical force centered at the top of
the block (see figure 6). We perform a simulation of linearly
elastic compressible material for increasing forces using
linear, quadratic, and cubic interpolation.

It is evident that increasing the degree of interpolation
and thus incrementing the number of degrees of freedom,
introduces more and more detail to the resulting shape. As a
consequence, linear elements are incapable of bending,
which leeds to a block-like outcome. Due to the linear set-
ting the resulting displacement is proportional to the
applied forces.

The next experiment deals with the effects of incom-
pressible media. Again, we take an elastic block as
described before and perform a linear, incompressible cal-
culation for two different forces. The interpolation of dis-

Figure 4: a) Control nets of linear, quadratic, and cubic
Bézier patches, b) Cubic triangular Bernstein polynomials
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placements is quadratic whereas the pressure is interpolated
linearly. It is a result of Finite Element theory, that in order
to prevent an element from so-calledlocking, the interpola-
tion of pressure in incompressible computations has to be of
a lower degree than the interpolation of displacements [1].

The results are shown in figure 7. It is interesting to see
that the results are very similar. However, the incompress-
ible material reveals to be somewhat stiffer and is harder to
bend. The coloring in the second and fourth column visual-
izes the displacement and pressure in compressible and
incompressible analysis respectively. Red stands for maxi-
mal displacement, magenta for minimal pressure.

The next experiment on synthetic data deals with the
comparison between linear and nonlinear analysis. We
expose an elastic block to increasing forces and examine
the resulting maximal displacement for linear and nonlinear
analysis (figure 8).

The results confirm our expectations: the linear element
shows the expected linear relation between applied force
and resulting displacement, whereas the stiffness of the
nonlinear element increases with the strain.

4.2. Responses of Human Facial Soft Tissue

The last experiment presents first results of facial tissue
simulation on the Visible Human Data Set. To simulate the
advancement of the lower jaw, we prescribed the nodal dis-
placements at the jaw bone on the inside of the tissue
according to the desired move. This leads to a correspond-
ing loading vector. In this case, we performed a compress-
ible linear analysis because of the little effects of
incompressible analysis and restricted ourselves to linear
computation because of the small displacements resulting
from the simulated surgical procedure.

Figure 9 shows the result of the simulation as a wire-
frame mesh superimposed on the original facial surface. In
spite of the simplifying assumptions made to compute this
model we obtain highly realistic displacement fields.

Figure 6: Comparison of linear, quadratic, and cubic Bé-
zier elements; E=1.0,ν=0.25, applied forces 0.1, 0.5, 1.0

Figure 7: Comparison of compressible and incompress-
ible analysis with quadratic elements; E=1.0,ν=0.5, ap-
plied forces 1.0, 2.0

linear
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quadratic
interpolation

cubic
interpolation

compressible
analysis

incompressible
analysis

Figure 8: Comparison of linear and nonlinear analysis
with quadratic elements; E=1.0,ν=0.25, A=5, applied force
0.5, 1.0, 1.5, 2.0

Figure 9: Surgical procedure on the lower jaw; linear
elasticity, compressible analysis with quadratic elements,
E=1.0, ν=0.25. The loading forces are defined by pre-
scribed displacements on the jaw bone.
(Data source: Visible Human Project, Courtesy National Li-
brary of Medicine)
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4.3. Performance

The performance of the system heavily depends on the type
of simulation used. A nonlinear analysis is computationally
far more expensive than linear simulation because of the
stepwise loading and the required iterations at each loading
step. Since the Bernstein-Bézier elements make the compu-
tation of the stiffness matrix extremely fast, most of the
simulation time is spent on solving the resulting system of
equations. Hence, the speed of the different solvers and pre-
conditioners strongly influences the total simulation time.

The simulation of the example shown in figure 9 took
44 minutes on a SGI Indigo2, R10000, 195 MHz, 512 MB.
The part of the jaw was made of 4108 quadratic tetrahedra
which resulted in a 17’904 x 17’904 stiffness matrix.

5. Conclusions and Future Work

We presented an implementation of several Finite Element
models for soft tissue simulation. We explained some of the
theoretical background of linear and nonlinear elasticity as
well as the Finite Element discretization based on a Bern-
stein-Bézier formulation. Furthermore, we discussed the
results on the basis of a synthetic example and a surgical
procedure on the Visible Human Data Set.

The main drawback of the current approach is the miss-
ing global C1 continuity. The resulting surface is therefore
of lower quality than in [15]. Moreover, the finite elements
presented in this paper areincompatible, that is, the C0 con-
tinuous interpolation across element boundaries cannot cap-
ture the continuity required for cross-boundary derivatives.
As a consequence, the development of a globally C1 conti-
nuous FE model is subject to current and future research.

In addition, we aim at the development of a prototype
for medical applications followed by a case study with indi-
vidual patients. It will enable us to compare the results of
different Finite Element models with those achieved by
actual surgical procedures. Only then will it be possible to
finally choose the most appropriate type of simulation.
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