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Abstract 
Visualization of similarity is an emerging technique for analyzing relation-based data sets. A common way of 
computing the respective layouts in an information space is to employ a physics-based mass-spring system. Force 
computation, however, is costly and of order N2. In this paper, we propose a new acceleration method to adopt a 
well-known optimized force-computation algorithm which drastically reduces the computation time to the order of N 
log N.  The basic idea is to derive a two-pass, “prediction and correction” procedure including a customized 
potential function.  We have applied this method to two different applications: web access and sales analysis. Both 
demonstrate the efficiency and versatility of the presented method.
 
 

1.  Introduction 
Many techniques try to visualize similarities between 
related data objects by arranging them in a 
multidimensional space [1]. By displaying data 
objects in this manner, it is possible to visualize the 
relationships between the objects while preserving 
the essential information in the data. A common way 
of computing the respective layouts is to employ 
physics-based mass-spring systems. The goal of these 
methods is to map similar objects to spatial positions 
close to each other, while unrelated objects are placed 
far away from each other. The data placement 
requires the computation of the forces applied to 
every object. 
 
Physics-based techniques have been widely used in 
many different applications. They include 
visualization [3] for web browsing, visual clustering 
methods [4,5], and web-based information retrieval 
systems [6]. Besides the mass-spring paradigm there 
is also a plenitude of other layout methods. Eick [7], 
for instance, uses algorithms that position nodes 
based on weighted links and employ hierarchy and 
filtering to unclutter the display. Kreuseler [14] 
describes an enhanced spring model by assigning a 
data object not only to points but also to small, 
general shapes to prevent objects from collapsing into 
each other.  
 
The usefulness of physics-based systems is limited if 
the volume of the number of objects grows large, as 
physics-based visualization techniques require 
computing the forces for every possible pairing of 
data objects. It is well known that this results in a 
computational complexity of O (N2 ). 
 

 
 
 
As a core limitation, such physics-based methods 
scale poorly with the number of data objects. As a 
further limitation, penetration, collision and cluttering 
of individual data objects may occur during 
visualization. 
 
Straightforward applications of acceleration methods 
used in particle physics, such as Barnes-Hut [2] and 
fast multipole expansions [10] (FME), are not 
possible, since these methods impose restrictions 
onto the employed potentials. Specifically the 
Barnes-Hut method demands particle forces which 
decrease monotonically as a function of the spatial 
distance. 
 
In this paper, we overcome the aforementioned 
limitations of physics-based layout techniques by 
deriving a novel method for accelerated force 
computation based on energy minimization. Our 
contributions are twofold. First, by refining the forces 
involved into the simulation and by minimizing 
potentials, we gain much better control over 
penetration and collision. Second, by introducing a 
prediction-correction scheme, we extend the 
conventional Barnes-Hut algorithm to make it work 
for non-monotonic potentials, such as the ones in 
information visualization. 
 
Our paper is organized as follows. First, we derive a 
potential function to provide an alternative to direct 
force computation. Next, using an error-correction 
method, we extend the Barnes-Hut force-computation 
technique. As a result, the computation can 
drastically be reduced from O(N2) to O(N log N + # 
corrections). After briefly explaining the Visual 
Similarity System (VISIM) [9], which implements 



 

 
 

this method, we describe some applications that 
demonstrate the performance and versatility of our 
approach. 
 

2. Energy Minimization and Customized 
Potential Functions  
Physics-based computations can either be carried out 
directly on the particle forces (strong form) or 
minimize the system’s energy (weak form) making 
use of potentials.   
 
In our setting, the potential eventually defines how 
the data objects are placed at the end of the 
minimization process. The user can change the 
current potential during runtime as needed. Thus, we 
can customize a potential function that avoids 
collisions and overlap of data objects. We can also 
customize a potential function that improves the 
layout of unrelated objects.  

2.1 Force And Potential 
The potential function is generally a function both of 
the similarity and of the distance of two objects: 

),( sree =  
First, we assume a configuration in 3-dimensional 
space by placing the objects at different locations.  
Then, we add up the total energy/potential of all 
objects: 
 

�= ),( ijij sreE   

Where i ∈  {1,…, n} are items in a three-dimensional 
space, E is the total potential, ijr  is the distance 

between two items from item i to item j, and ijs  is 

their similarity.  This means that the total potential E 
is the sum of the individual energies associated with a 
pair of items. An optimal configuration is the one in 
which the total energy is minimal. Force and energy 
are closely related to each other when the force is the 
negative gradient of the energy. 
 
The main advantage of using a potential function is 
that it gives us a much finer control over the particle 
behavior and thus allows us to overcome the 
limitations described above. As explained in the next 
section, customized potential functions can reverse 
force directions when objects get too close to each 
other and thus prevent collisions and penetration.  

2.2 Customized Potential Functions for 
Information Visualization  
From many experiments in Hewlett Packard 
Laboratories, we have derived a customized potential 

function to avoid collisions of very similar objects. 
We have applied this function to many different 
physics-based applications, including IT user search 
behavior analysis, web access response time analysis, 
and sales revenue analysis.  We found that the 
following potential function [8] achieves the best 
results: 

crbsr
r
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Here, a, b, and c are fixed numbers which can be 
used to calibrate the potential.  The first term a/r is 
used to prevent two objects from penetrating each 
other, even in cases of large similarity values.  The 
second term bsr2 controls the attraction of objects as 
a function of the similarity. This ensures that two 
objects, which are more similar, end up at a smaller 
distance than unrelated objects. The third term cr, 
usually with a very small c, makes sure that objects 
do not drift to infinity, as this would lead to a poor 
visual layout.  
 
A picture of the potential for different similarities can 
be seen in Figure 1. 
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runtime performance of the visualization system.  In 
astrophysics, various object methods exist to 
accelerate the computation including Barnes-Hut [2] 
and fast multipole expansions (FME) [10]. The 
complexity of the forces as a function of the data 
relations, however, prohibits a straightforward 
application of these methods in applications using 
similarity. 
 
3.1 Concept 
Specifically, the aforementioned algorithms 
approximate the force of a group of objects by 
replacing the group by some heavier “super object”. 
However, the forces in the visualization system do 
not depend only on the object distance r, but also 
heavily on the data similarity s. Hence, it seems to be 
impossible to build a single data structure which can 
be used to calculate forces, as the methods from 
astrophysics usually do. The problem is illustrated in 
Figure 2. In this example, most object pairs have 
similarity 0 and only a few pairs have similarity 1. 
These are the pairs (A, B), (C, D) and (D, E). When 
calculating the force for object B, the conventional 
Barnes-Hut algorithm assembles objects C and D to a 
single “superobject”, as they are far away from B and 
close to each other.  When computing the force for 
object E one would want to apply the same 
optimization. Unfortunately, forces strongly depend 
on object similarities. That is, the force from pair (C, 
D) onto B can be completely different from the force 
from (C, D) onto E. Therefore, straightforward 
application of algorithms like Barnes-Hut or FME is 
not possible as these algorithms critically depend on 
forces being only a function of the object distance. A 
detailed discussion of conventional particle 
simulation algorithms is beyond the scope of this 
article and we refer to textbook literature [15,16] for 
further information.  
 

                
Figure 2:  The particle force is calculated.  Here, the 
force on the two objects depends on the similarity 
between the objects.  The similarity of most pairs is 0 
(which implies the unified force), but some pairs 
have similarity 1 (pairs (A, B), (C, D), and (D, E)).  
 
We propose to solve this problem using a two-pass 
method consisting of a prediction step and a 

correction step as described in the following sections. 

3.2 A Prediction Step 
In the prediction step, all potential functions are 
replaced by functions that depend purely on the 
distance. This enables us to use any of the 
conventionally optimized, hierarchical force-
computation algorithms, including Barnes-Hut or 
FME. 
 
To speed up the computation, we start by setting the 
similarity of all the object pairs to 0 in the prediction 
step. Hence, we only need to process the links with 
non-zero similarities in the correction step.  
 
Our observations have shown that most of the forces 
are based on distance. We can calculate these forces 
on each object by assuming that all the forces follow 
the same direction. Doing so, the force can be 
calculated using the Barnes-Hut or any other well-
known algorithms. 
 
3.3 A Correction Step 
In the correction step, we adjust for the simplifying 
assumption above and update the forces for all links 
having substantially different behaviors. In the 
prediction step, for each of those links the previously 
computed force of both objects is subtracted. In a 
correction step we add the real force by explicit force 
computation. Because this step involves only K<< 
½N(N - 1) edges (links) between pairs of objects with 
non-zero similarity, we only add a complexity of 
O(K) to the overall computational effort. Thus, the 
total complexity of the algorithm is O(N log N + K). 
In our application, the user can control the quality of 
the approximation by changing the edge parameter K, 
such as setting edges with low similarity values to 
similarity 0.  Here K determines the amount by which 
forces need to be adjusted in the correction set. That 
is, by changing K we set links with similar forces to a 
lump force. Furthermore, we can adjust the fixed 
accuracy parameter ϑ of the Barnes-Hut algorithm 
[2] to give us total control over the algorithm and to 
adjust the tradeoff between accuracy and speed.  
 
The accelerate control algorithm is illustrated in 
Figure 3.  Figure 3(a) shows a set of objects for 
which we want to calculate the forces. The lines 
symbolize links with similarity 1.0, but the 
aforementioned algorithm could handle any similarity 
other than 0. In Figure 3(b) we illustrate the 
prediction step. By setting the similarities of all links 
to 0 we make the situation amenable to the 
astrophysical object process. After applying the 
object algorithm for the force computation as in 
Figure 3(c), we correct the errors by reintroducing the 
initial similarities and eventually obtain the final 
force field as depicted in Figure 3(d).  



 

 
 

 
 
 
 
 
 
 
 
 
 (a) Compute the forces      (b) Set similarities to 0 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: A new accelerated potential function 
with prediction and correction. 
 
3.4 Minimization 
In order to compute the final layout for visualization, 
the total energy needs to be minimized.  Our goal is 
to find a configuration of particle positions such that  

 
Where items i ∈  {1,…, n}, and the position 
corresponding to item i in 3-dimensional space is 
denoted as Xi. X represents all the points in a matrix. 
The distance between two points Xi and Xj is  Xi − 
Xj denoted by rij.  
 
The minimization step can be achieved by using 
either any numerical minimization method, such as 
steepest descent [11], or by simulating the scene, 
using leapfrog [12,13], Conjugate Gradients, and 
Runge Kutta.  
 

4.  The Visual Similarity System (VISIM) 
To analyze large volumes of transaction data with 
multiple attributes, the methods described in this 
paper have been integrated into a data analysis 
visualization system, VISIM. The system uses a web 

browser with a Java activator to allow real-time 
interactive visual data mining on the web.  
 
4.1 System Architecture and Components 
The VISIM system connects to a data warehouse 
server and uses the database to query for detailed data 
as needed. The data structure is kept in memory to 
support real-time manipulation and correlation. As 
illustrated in Figure 4, the visual clustering system 
architecture contains three basic components. 
 
4.1.1 Similarity 
The relationship between data objects is characterized 
according to their “similarities”. Similarity varies 
according to the characteristics of the applications. 
For example, in a product sales application, the 
similarity is defined as how often these products are 
bought together.  
 
4.1.2 Force Computation 
First, force computation uses potentials to find a 
placement such that similar objects are close and 
dissimilar objects are far. Second, VISIM applies the 
Barnes-Hut algorithm to calculate the force. Third, 
VISIM corrects the forces for item pairs with non-
zero similarity values. Last, VISIM performs 
relaxation to minimize the total energy.  
 
4.1.3 Interactive Navigation 
This system provides for navigation of relationships 
and patterns.  
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Figure 4: System architecture and components. 
 
4.2 User Interactions 
Interactivity is an important aspect of a web-based 
visualization system. To make large volumes of web 
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transactions easy to explore and to allow users to 
navigate the graph and to discover patterns and 
trends, VISIM provides some of the following 
interaction capabilities, such as clustering, searching 
and freezing, as illustrated in Figure 5A, 5B, and 5C. 
 
(1) Clustering Capability 
The clustering capability enables users to simplify 
complex layouts by grouping spatially adjacent 
objects. Users are allowed to click on a cluster and 
drill down for detail information.  
 
A scene clustered with BLOBS is shown as follows: 
 

 
Figure 5A: User Interaction – Clustering 
 
(2) Freezing Capability 
The freezing sets the objects to stay at the same 
position during the minimization (object movement) 
step. This capability is required to construct a special 
user-controlled layout. 
 

 
 
 
 (3) Searching Capability  
Search capability allows the user to locate an object 
in the scene and to draw the paths to the related 
objects. 

A search dialog is used to find an object in the scene.  
 

  
 
 
The found object – printer will be highlighted. All 
connected lines will be drawn as follows. 
 

Figure 5B: User Interactions–Freezing 
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Figure 5C: User Interactions–Searching



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

5.  Application and Evaluation 
VISIM has been prototyped in several e-service 
applications at Hewlett Packard Laboratories. It has 
been used to visually mine large volumes of service 
transactions and customer shopping activities at 
online web sites. 
 
5.1 Web Access Response Time Analysis 
The visual clustering system has been applied to web 
access patterns and behaviors. A web transaction 
starts with a user clicking on a web page. The client 
(web browser) sends the request through several 
components, such as applications servers, to perform 
some service. For example, a user clicks on a web 
page to purchase an airline ticket.  The data access 
patterns through various components play an 
important role for the overall transaction. Often, they 
impact the quality of end-user experience. In order to 
provide faster service, web analysts need to analyze 
the data and to balance the workload among their 
servers.   
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Figure 6: A visual clustering for analyzing 400,000 web transactions with 986 clients a
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Figure 7:  Product-Country Relationship: The selected product is sold only in Mexico and Argentina.  
There were 47,753 product sales transaction records in the year 2000. 
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5.2 Sales Transaction Analys
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Where 
 
 S= Similarity between products and countries  
 Nc= Number of times product was bought in country 
 Nt = Number of times product was bought in total 
 
The factor value ε can be adjusted as needed. The 
similarity between countries is set to 0 in the current 
implementation. 
 
The analysts have used this method to analyze their 
product sales.  For example, they were able to find out 
which country buys what products and what product 
sales are the largest in which countries. Also, they 
discovered product combinations such as printer, 
paper, ink, black print head, and cartridge tape appear 
together frequently on the same invoice. 
 
Table 1 shows the sales transaction layout time using 
the accelerated force computation versus conventional 
methods. 
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accelerated 
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47,753 

  
1,436 

 
1,060,660 

  
49min 

 
With 
accelerated 
method 

 
47,753 

 
1,436 

 
2,075 
(# non-zero 
similarities) 
 

  
16sec 

Table 1: Sales transaction analysis performance 
comparison. 
 

6.  Conclusion and Future Work 
In this paper, we have attacked two main problems 
while using physics-based layout techniques. First, we 
use a customized potential function to have control 
over collisions of very similar objects. Second, we 
employ a prediction-correction scheme by extending 
the conventional Barnes Hut algorithm to drastically 
reduce the force computation time. We have applied 
both ideas to visualize large-scale services and sales at 
Hewlett-Packard web sites. As a result, the speed of 
force computation is orders of magnitude faster than 
before. In addition, the display has substantially 
improved the clarity of the layout. Our future work 
will be focus on animation to observe the changes 
over time. 
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