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Abstract—This paper presents a method for filtered ridge extraction based on adaptive mesh refinement. It is applicable in situations
where the underlying scalar field can be refined during ridge extraction. This requirement is met by the concept of Lagrangian coherent
structures which is based on trajectories started at arbitrary sampling grids that are independent of the underlying vector field. The
Lagrangian coherent structures are extracted as ridges in finite Lyapunov exponent fields computed from these grids of trajectories.
The method is applied to several variants of finite Lyapunov exponents, one of which is newly introduced. High computation time due
to the high number of required trajectories is a main drawback when computing Lyapunov exponents of 3-dimensional vector fields.
The presented method allows a substantial speed-up by avoiding the seeding of trajectories in regions where no ridges are present
or do not satisfy the prescribed filter criteria such as a minimum finite Lyapunov exponent.

Index Terms—Ridge extraction, flow visualization, coherent structures, vector field topology, unsteady vector fields.

1 INTRODUCTION

There are many applications in science and industry where visualiza-
tion by isosurfaces is not feasible e.g. because the feature of interest is
superimposed by a field that decays along its desired isosurface. How-
ever, sometimes it is possible to address these visualizations by ridge
extraction. In short, ridges are lower-dimensional (elongated) regions
of relatively high values.

The extraction of 1-dimensional ridges in n-space is easily accom-
plished by the Parallel Vectors method [23]. One of the advantages
of this method is that explicit computation of eigenvectors is avoided
and therefore the computational costs of the extraction are alleviated.
However, the extraction of n-dimensional ridges with n > 1 can not be
addressed by Parallel Vectors. These are the cases where the March-
ing Ridges method [6] is appropriate. Extracting ridges by field lines
of the Feature Flow Field as done in [26] is a global operation and
therefore not used here. This paper presents a method based on March-
ing Ridges that is applicable in situations where the underlying scalar
field can be sampled during ridge extraction. Its strength shows up
especially in cases where finely resolved ridges are desired, large re-
gions do not exhibit ridges, or where the sampling of the scalar field is
expensive.

The concept of Lagrangian coherent structures (LCS) is widely and
increasingly used in fluid dynamics and in the analysis of the phase
space of dynamical systems. There is no consensus what is meant
by coherent structures, leading to different definitions. Some are re-
stricted to vorticity such as that by Hussain [14], others are more gen-
eral such as the one by Robinson [24] where coherent motion is de-
fined as “a region over which at least one fundamental flow variable
exhibits significant correlation with itself or with another variable over
a range of space and/or time that is significantly larger than the small-
est local scales”. These definitions are referring to 3-dimensional re-
gions. According to Haller [9], attracting and repelling Lagrangian
coherent structures in (transient) vector fields are of lower dimension
and tend to be the equivalent to unstable and stable manifolds (separa-
trices) in vector field topology [12, 1]: they separate regions of qual-
itatively different behavior and are also involved in mixing processes.
Opposed to Newtonian coherent criteria such as the Q-criterion [13],
the ∆-criterion [4], and the λ2-criterion [15], which are derived from
the velocity gradient and therefore Galilean invariant, Lagrangian co-
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herent structures are based on trajectories and even invariant to rotation
of the frame of reference (they are objective). Because of their founda-
tion on trajectories, LCS are insensitive to short-term perturbations or
anomalies. In 2001 Haller has shown [9, 10] that LCS can be obtained
as ridges in the largest direct Lyapunov exponent (DLE), also called
largest finite-time Lyapunov exponent (FTLE). FTLE was defined by
Lorenz in 1965 [20] and e.g. by Goldhirsch et al. in 1987 [8] for mea-
suring predictability, see Yoden et al. [30] for details. For steady vector
fields LCS is comparable to vector field topology [9], although it tends
to convey more information [25]. However, LCS is still well defined
and interpretable for unsteady vector fields due to its Lagrangian def-
inition, whereas classical vector field topology is only able to give an
instantaneous view, except for the approaches by Theisel et al. [29]
and Shi et al. [27] based on path lines. LCS move and deform over
time as the starting time of their trajectories is modified. They behave
as material surfaces that get advected with the flow in a fluid dynam-
ics view. LCS have played only a minor role in the field of scientific
visualization until now. Two examples are direct visualization of 2-
dimensional FTLE by Garth et al. [7] and the visualization of ridges
in 3-dimensional FTLE by the authors [25].

Section 2 gives some background on ridge extraction and ridge
filtering. Section 3 introduces the filtered adaptive mesh refinement
(AMR) ridge extraction. Section 4 gives some background on (fi-
nite) Lyapunov exponents and builds on the approach of Haller [9]
to identify LCS by extraction of ridges in FTLE, where FTLE is com-
puted from the flow map as described in Section 4.1. It also presents a
method to compute the finite-size Lyapunov exponent, and introduces
a new finite Lyapunov exponent variant as well as the way how to
compute it. In Section 5 the filtered AMR ridge extraction is applied
to the different finite Lyapunov exponents for vector fields from prac-
tical CFD simulations, and interpretations are given. Finally, Section 6
concludes the work.

2 RIDGES

Haralick [11], Eberly [5], and Lindeberg [18] proposed closely re-
lated definitions for k-dimensional Height Ridges in n-space. There are
also other ridge concepts such as Profile Ridges and Second Deriva-
tive Ridges [21]. However, there are usually only minor differences in
the results. Height Ridges can be seen as the most natural concept in
most applications and therefore it is widely used such as in the case of
Parallel Vectors [23] and Marching Ridges [6]. This is also the cause
why it has been chosen for the filtered AMR ridge extraction (of finite
Lyapunov exponents) in this paper.

Height Ridges can be seen as local maxima in a relaxed sense. They
reside at locations where the scalar field s exhibits a maximum in at
least one direction. Generally, Height Ridges are d-dimensional man-
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ifolds in n-dimensional space with n > d ≥ 0. The constituent cri-
teria can be formulated using the gradient and the Hessian of s. By
definition, the eigenvectors εεε i corresponding to the d largest eigenval-
ues λi (i = 1, . . . ,d) of the Hessian point along the ridge whereas the
eigenvectors εεε j corresponding to the (n− d) smallest eigenvalues λ j
( j = d + 1, . . . ,n) are perpendicular to the ridge. According to the lo-
cal maximum property, one necessary condition for a ridge is that the
directional derivatives in εεε j directions are zero, formulated as

εεε j ·∇s = 0. (1)

The second condition for a local maximum and hence a Height Ridge
is that the second directional derivatives in εεε j directions are negative,
formulated as

λ j < 0. (2)

The same concept can be used to compute Valley Lines which is the
opposite of Height Ridges. They can be obtained by extracting Height
Ridges of the field −s. The reader is referred to the work of Haralick,
Eberly, Lindeberg, and Majer [21] for further details.

2.1 Ridges in Discrete Data
As already mentioned, 1-dimensional ridges are preferably extracted
from discrete data using the Parallel Vectors method, whereas n-
dimensional ridges with n > 1 are preferably extracted using the
Marching Ridges algorithm. Marching Ridges is similar to the family
of Marching Cubes [19] algorithms. Marching Cubes is a cell-wise
algorithm for generating isosurfaces, it generates a set of triangles for
each cell of the grid. The so-called edge intersections are the positions
on the edges of the cell where the scalar field has the desired value.
The triangles are generated according to the edge intersections using a
look-up table for signs of the values at the nodes. Criterion (1) is suited
for being addressed by Marching Cubes. However, the fact that eigen-
vectors lack an orientation impedes a direct application, meaning that
the evaluated directional derivatives can not be assumed to be consis-
tent. Marching Ridges (and the presented algorithm) solves the prob-
lem by making the eigenvectors of a cell consistent using Principal
Component Analysis. Once the orientations are made consistent, cri-
terion (2) can be applied. If an edge intersection violates it, we do not
generate the corresponding triangles. Another issue is the orientation
of the resulting triangles. Kindlmann et al. [17] orientate the triangles
in a post-processing pass. However, we experienced non-orientable
manifolds in some cases of finite Lyapunov exponent ridges. This
problem is addressed by appropriate rendering techniques such as two-
sided normals.

2.2 Ridge Filtering
Here some filtering criteria for ridges are recapitulated, and discussed
in the context of adaptive ridge extraction, that have already been pre-
sented in [25] for ridge extraction in FTLE fields.

Because ridges are extracted in this work using the Hessian of the
scalar field, noise amplification can become an issue. A common way
to handle it, is to apply smoothing prior to the evaluation of deriva-
tives. One has to keep in mind however, that smoothing can deform
the ridges, which can lead to e.g. instantaneous finite Lyapunov ex-
ponent ridges that are permeated by trajectories in contradiction to the
theory. In our case, the gradient at a given node (of the possibly un-
structured sampling grid) is computed by fitting a linear field to its
neighboring nodes in a Least Squares sense. This allows for incorpo-
rating the smoothing into gradient computation by simply increasing
the neighborhood range by a user-defined integer value. A value of 2
was used for the results in Section 5, which increased perceptibility
and only led to negligible deviations.

Even with smoothing, the Marching Ridges method from Sec-
tion 2.1 often yields more ridge regions than desired. This can be
addressed by feature filtering.

One natural criterion for filtering ridge regions is to prescribe a min-
imum height of the ridge:

s≥ smin. (3)

In the case of finite Lyapunov exponent ridges, this equals to the pre-
scription of a minimum separation and is therefore a straightforward
choice. This way, ridges with low separation property are suppressed,
leading to significant, consistent, and reliable visualizations. It is
therefore our preferred method for filtering finite Lyapunov exponent
ridges. The reader is referred to [25] for further details on the influence
of this filtering criterion.

Another natural criterion for filtering ridge regions is to prescribe a
maximum for the second derivative λn across the ridge, which results
in suppressing regions with too “flat” ridge property:

λn ≤ λmax. (4)

In the case of finite Lyapunov exponent ridges, this is not as mean-
ingful as criterion (3). Furthermore, it depends on the sampling of
the scalar field, making it less suitable for guiding the subdivision of
Section 3, but useful for post-processing, e.g. for further reducing the
amount of ridges and hence occlusion.

Since ridge extraction often delivers small ridges which might be
regarded as noise as long as the other filtering criteria did not dis-
rupt the ridges due to low tolerance, another criterion is to prescribe
a minimum size of the connected components of the resulting mesh.
However, because this is a global criterion, it can not be used for the
subdivision of Section 3, only for post-processing, mainly for reducing
occlusion.

Finally, for the case of scalar fields derived from trajectories, such
as Lyapunov exponents, another filtering criterion is to prescribe a
minimum integration time for the trajectories that lead to a given ridge
region. This allows to suppress ridge parts that are generated due to
trajectories reaching the domain boundary. However, it was not needed
for the results in Section 5.

The point-wise filtering conditions of this section are tested at the
vertices of each generated triangle and it is rejected if at least one
of the conditions is violated for at least one of its vertices. Triangle
trimming was not implemented but would be a way to reduce zigzag
ridge borders.

3 FILTERED AMR RIDGE EXTRACTION

This section describes the method for filtered ridge extraction based
on adaptive mesh refinement.

Sampling a scalar field at a given resolution uniformly, generating
ridge elements from that field, and rejecting many of these elements
in the end by filtering wastes a lot of computation time and space, es-
pecially if there are large regions that would exhibit no ridges at all
even if no filtering was applied. One would like to sample the scalar
field only in regions that exhibit ridges in the end, especially if the
sampling of the scalar field is as costly as in the case of Lyapunov ex-
ponent computation. This would allow to end up with finer resolved
ridges in the regions of interest with the same computational cost or
even with lower cost. This constitutes the main motivation for incorpo-
rating adaptive refinement of the scalar mesh into the ridge extraction
procedure.

The main goal of this method and a requirement for successful ap-
plication in engineering is to obtain results that are identical to those
obtained from uniform sampling at the prescribed finest subdivision
resolution. This is especially valid for finite Lyapunov exponents since
they depend on the sampling resolution (section 2.3 of [9] and Sec-
tion 3.2 of this work). Although complete ridges may get missed in the
presented method (because of too coarse initial sampling, because (4)
was used instead of (3), or due to reasons mentioned in Section 3.2),
the obtained ones are identical to those from uniform sampling due to
the “ridge growing” presented in the next section. This is the reason
why no measurements of accuracy are presented although they have
been performed extensively during testing, where ridges were rarely
missed. Part of the problem is solved by the “look ahead” procedure
presented in the next section. After the algorithm has terminated and
the result is obtained, it is possible to continue with the look ahead as a
background process in order to guarantee that all ridges are captured.

Assuming sufficiently fine initial grids, a ridge does not move sub-
stantially during refinement, therefore we can start with a relatively
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coarse mesh and use the ridges therein for the refinement process. The
refinement is performed in an iterative manner. At each iteration, all
cells that contain, are expected to contain, or adjoin to ridges are sub-
divided, but not more than to the current subdivision level. The cur-
rent subdivision level starts with 1 and is increased with each iteration.
This procedure makes sure that all cells at and in the neighborhood of
ridges are subdivided to the same level. This has the advantage that
the resulting grid has uniform subdivision level in ridge regions and
therefore the Marching Ridges algorithm can be applied without the
risk of producing cracks in the meshes, which would usually occur if
a ridge extends over regions of different subdivision level. The next
section describes the algorithm in more detail.

3.1 Algorithm
The following functions will be used in Algorithm 1:

• detectRidgeCells(candidateCells, filter):
Gradient, Hessian, and the eigenvalues and eigenvectors of the
Hessian are computed at the nodes of the candidate cells. Then
the intersected edges of candidateCells are determined
in the sense of Marching Ridges, according to the Height
Ridge criteria (1) and (2). If filter is true, the point-wise
filtering criteria from Section 2.2 are also applied to the edge
intersections. A cell is a ridge cell and returned in the set
of ridge cells if at least one of the edges of the cell remains
intersected.1

• getNeighboringCells(cells, range, level):
This function returns the neighboring cells that lie at least
partially within the node-connected2 range around cells,
whereas range is measured at subdivision level. Cells with
lower subdivision level σ contribute a range of 2(level−σ).

• cellsForLevelDiff1(cells): This function returns
cells that need to get subdivided additionally to cells so that
neighboring cells differ at most in one subdivision level.

• subdivideCells(cells): This function subdivides
cells, adapts their subdivision level σ , and returns newly
generated nodes and newly generated cells.

The explanations for Algorithm 1 are as follows:
i) iterations (Line 1): The total number of subdivision levels to be

performed by the loop at line 12.
ii) range (Line 2): The neighborhood range around the ridge cells.

Please refer to the discussions of (v) and (vi) below for further details.
iii) laCellCnt (Line 3): See look ahead step (viii) explained below.
iv) laCriterion() (Line 4): One of the point-wise filtering criteria of

Section 2.2 has to be chosen for the look ahead procedure (viii). This
method returns the value of the quantity tested by the corresponding
criterion. If the ridge height criterion (3) is chosen, it returns the max-
imum of the scalar values at the nodes of the cell. If the second deriva-
tive criterion (4) is chosen, it returns the negative of the minimum λn
at the edge intersections of the cell.

v) Add ridge cell neighbors (Line 15): This maintains a uniformly
subdivided band of width range around the filtered ridge cells which
is needed for gradient and Hessian computation that is not affected by
AMR (neighboring cells with lower subdivision level). See also Fig-
ure 1 (left). For results that are identical to those based on a uniformly
subdivided grid, range has to be set to 2 times the gradient fitting
neighborhood range of Section 2.2. However, experience has shown
that it can often be set to much smaller values, leading to negligible

1Defining a ridge cell by the presence of a generated triangle is not feasible
because no triangles are generated if an edge intersection violates e.g. (2) which
is often the case at the fronts of the current ridges, and this would not allow the
ridges to grow during the refinement process.

2It has been chosen to use node-connected neighborhoods instead of face-
connected neighborhoods because it is a better approximation to the support
radius of second derivatives (Hessian) even for a range of 1.

Algorithm 1 Filtered AMR Ridge Extraction
1: iterations: number of subdivision iterations to perform
2: range: user-defined integer neighborhood range
3: laCellCnt: number of cell-subdivisions to look ahead
4: laCriterion(): filter criterion used for look ahead
5:
6: Initialization: A coarse sampling grid is supplied by the user and

the scalar field is sampled on this grid.
7: for all cells c of sampling grid do
8: σc← 0 // σc: subdivision level of cell c
9: end for

10: R← detectRidgeCells(allCells, true)
11:
12: // iterate over subdivision levels
13: for it = 0 to iterations−1 do
14: S ←R

15: S ←S ∪getNeighboringCells(R,range, it +1)
16: R← /0
17:
18: // subdivide / let ridges grow
19: subIter← 0
20: while S 6= /0∨ subIter = 0 do
21: S ←S ∪cellsForLevelDiff1(S )
22: N ,C ← subdivideCells(S )
23: S ← /0
24: sample scalar field at new nodes N

25:
26: // add lower-level neighbors of ridge cells
27: P ← detectRidgeCells(C , true)
28: T ← cells with σ = it +1
29: Q← detectRidgeCells(T \C , true)
30: M ← getNeighboringCells(P ∪Q,range, it +1)
31: S ←S ∪ cells in M with σ < it +1
32: R←R∪ cells in (P ∪Q) with σ = it +1
33:
34: // test lower-level cells
35: T ← cells with σ < it +1
36: S ←S ∪detectRidgeCells(T , true)
37:
38: // look ahead
39: if laCellCnt > 0∧ (P 6= /0∨ subIter = 0) then
40: T ← cells with σ < it +1
41: P ← detectRidgeCells(T , f alse)
42: R← sort cells in P by laCriterion()
43: S ←S ∪ laCellCnt highest cells in R
44: end if
45: subIter← subIter +1
46: end while
47: end for
48:
49: generate ridge triangles from R according to Section 2

deviations. This allows for a more efficient but approximate ridge ex-
traction because it reduces the number of performed field evaluations.
If the scalar field itself requires gradient computation, the correspond-
ing gradient fitting neighborhood range should also be added to range
(see Section 3.2 for details).

vi) Add lower-level neighbors (Line 26): Schedules lower
subdivision-level neighbors of ridge cells for subdivision (see also Fig-
ure 1 (center)). This maintains the band of uniform subdivision level
around the ridges as in (v) above and also allows the ridges to grow.
The fact that not only neighbors of the new ridge cells P are tested
but also neighbors of already existing ridge cells at finest subdivision
level Q, accounts for the case where range has been chosen smaller
than required for exact results. In this case subdivided cells may get
ridge cells only after subdivision of nearby cells.
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vii) Test lower-level cells (Line 34): This tests cells that may have
got ridge cells because of subdivision of nearby cells.

viii) Look ahead (Line 38): We look ahead for the cases where
ridge components would get missed completely because they are too
small or too faint, or because the initial sampling grid was chosen too
coarse.3 This can happen if no cell of a ridge satisfies the point-wise
filtering criteria of Section 2.2 at a low subdivision level, but would
satisfy them after further subdivision(s). The parameter laCellCnt pre-
scribes the number of unfiltered ridge cells with maximum value of
laCriterion() that are subdivided (looked ahead) at each iteration even
if they do not satisfy the filtering criteria. The parameter laCellCnt can
be set to 0 if the user is only interested in the most prominent ridges.

Fig. 1. Refinement iteration. Left: 3 ridge cells (dark gray) and their 12
neighbors (light gray) scheduled for subdivision. Center: 8 ridge cells
(dark gray) and their 6 lower-level neighbors scheduled for subdivision
(light gray). Right: 4 new ridge cells. No new lower-level neighbors, iter-
ation proceeds to next subdivision level (left figure). Ridge is not com-
puted during refinement, only drawn for illustration of edge intersections.
Neighborhood range is 2.

3.2 Implications for Fields Based on Local Operators
Some issues arise if filtered AMR ridge extraction is applied to scalar
fields that can not be evaluated in a strictly point-wise manner. One
class of such fields are finite Lyapunov exponents where the compu-
tation is based on gradients of a map (see Section 4.1). A natural
approach to the computation of such fields is to sample the underlying
field (the map) at a grid that is identical to that of the scalar field. In
that case, there are several implications. One aspect is that the sup-
port radius of that gradient has to be added to the range parameter of
Section 3.1 for obtaining exact results as in the discussion of (v) in
Section 3.1.

Another issue is that the scalar value may depend on the sampling,
because e.g. gradients of non-linear fields vary with sampling resolu-
tion. It is therefore not possible to estimate the value at a finer reso-
lution from the values at a lower resolution without any assumptions
on the field. In the case of finite Lyapunov exponents, no satisfying
assumption can be made. The variation of the value during refinement
has implications on the ridge height criterion (3). There are two ap-
proaches to handle the problem: either use a lower threshold and apply
the desired threshold as post-processing, or increase laCellCnt. In the
worst case complete ridges may get missed, but thanks to the “ridge
growing” procedure, the obtained ridges will be identical to those from
a uniform sampling at finest subdivision level.

A further issue is that there might be nodes in the grid that are in-
valid. In the case of the map, this can be because the positions are
outside the domain. At such nodes no gradient is computed and fur-
thermore they are not used for gradient computation at neighboring
nodes. It might also happen that there are not enough neighbors for
computing gradients due to the restriction of the node neighborhood.
This case has also to be handled appropriately. If the gradient can
not be computed at a node for the mentioned reasons, the node of the
scalar field is marked accordingly. During application of the filtered
AMR ridge extraction method, cells containing such nodes are rejected
from the ridge extraction process because they can not be handled by
the Marching Cubes look-up table.

3In theory a minimum of one trajectory per region of different behavior is
required, although small regions are often detected during subdivision due to
the subdivision band around detected ridges.

4 LYAPUNOV EXPONENT

The Lyapunov exponent (LE), also called Lyapunov characteristic ex-
ponent, measures the exponential growth of an infinitesimal perturba-
tion. It is often used to analyze the predictability of continuous dynam-
ical systems or their sensitivity to initial conditions. An n-dimensional
system, or vector field, has n Lyapunov exponents and the largest Lya-
punov exponent σ1(x) measures the maximum possible divergence of
two nearby trajectories, starting in the neighborhood of x. If it is pos-
itive, the trajectory is part of the unpredictable (chaotic) regime of the
system, otherwise it belongs to a predictable region.

The largest Lyapunov exponent at position x is defined as

σ1(x) = lim
T→∞

lim
‖δδδ (t0)‖→0

1
|T |

ln
‖δδδ (t0 +T )‖

‖δδδ (t0)‖
(5)

where δδδ (t) is the perturbation at position x and time t. The initial
perturbation has to be oriented in direction of maximum expansion.

The subsequent sections describe finite LE variants with implica-
tions regarding filtered AMR ridge extraction, additional to those men-
tioned in Section 3.2. Section 4.1 describes the FTLE variant and its
computation according to Haller [9]. In Section 4.2 the FSLE variant
is described and a method for computing it is presented that builds on
the one used for FTLE. Finally, Section 4.3 proposes a new variant
called FTLE Maximum and describes its computation.

4.1 Finite-Time Lyapunov Exponent
Equation (5) is an asymptotic measure in time and therefore a global
quantity. However, there are several reasons for the need of a more
local measure. One reason is that many vector fields have domain
boundaries and therefore do not allow for infinite advection time. Be-
sides computability another reason is that the LE is constant along a
trajectory even if the local expansion rate varies along it.

According to Nese [22] the local divergence rate at time ti and for
time step ∆t can be expressed as

1
|∆t|

ln
‖δδδ (ti +∆t)‖
‖δδδ (ti)‖

, (6)

and the time average of (6) is the largest Lyapunov exponent

σ1(x) = lim
n→∞

1
n

n

∑
k=0

1
|∆t|

ln
‖δδδ (t0 +(k +1)∆t)‖
‖δδδ (t0 + k∆t)‖

, (7)

provided that δδδ (t0) is oriented in direction of maximum expansion.
The local divergence rate (6) represents the largest finite-time Lya-
punov exponent (FTLE) for i = 0 and ∆t = T . Nese was concerned
with the information theory aspect and therefore used log2 instead of
ln. He also mentioned that in practice, renormalization [3] has to be
performed frequently along the trajectories. This addresses the fact
that one has to make sure that the trajectories do not separate too much,
otherwise they can not measure the expansion rates around either of
the trajectories. In the case of renormalization, (7) follows only one of
the two trajectories. This is numerically achieved by regular renormal-
ization of the perturbation δδδ (ti) to the length ‖δδδ (t0)‖ but preserving
its orientation. Haller [9] addresses the renormalization issue by stat-
ing that only finite-time phenomena are measured and hence requiring
a dense enough sampling grid solves the problem. However, there are
cases where even arbitrarily fine sampling is not able to produce the
same results as with renormalization, e.g. in a flow that splits with-
out shear. On the other hand, the objective of this paper is coherent
structures and not predictability, and even coarse samplings are able to
capture the large-scale behavior of a vector field.

Haller [9] proposed to base FTLE computation on the flow map.
The flow map φφφ t0+T

t0 (x) maps a sample point x to its advected posi-
tion and is obtained by defining a sampling grid, seeding a particle at
each node of the grid at time t0, advecting the particles for time T , and
storing the resulting positions at the nodes of the grid. We stop the
integration of a trajectory if it reaches a domain boundary. One could
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determine the direction of maximum expansion as the eigenvector be-
longing to the largest eigenvalue of

∆T
t0(x) = (∇φφφ t0+T

t0 (x))> ·∇φφφ t0+T
t0 (x).

According to Haller [9] the maximum stretching factor can be obtained
as the spectral norm of ∇φφφ t0+T

t0 (x), defined as the square root of the
largest eigenvalue of ∆T

t0(x):
√

λmax(∆T
t0(x)) (8)

and the largest FTLE is computed from (8) as follows:

σT
to (x) =

1
|T |

ln
√

λmax(∆T
t0(x)). (9)

The reader is referred to [9] for further information on LCS and FTLE.
Some additional issues arise if the filtered AMR ridge extraction

technique from Section 3 is to be used for ridge extraction in finite
LE variants of unsteady vector fields. Because the subdivision proce-
dure is based on the values of these fields, the complete (incremen-
tal) procedure of their evaluation has to be performed for all nodes at
a given subdivision (and ridge-growth) iteration before being able to
proceed to the next level. One implication is that this makes a path
line integration method necessary, that is even efficient for depth-first
integration of path lines. Instead of loading complete time steps, we
reorganize the vector field data in a preprocessing step. A single file
is generated that stores for each node the vectors of its time steps con-
secutively. The access to the data is performed by mmap(): the file is
mapped to an address space of equal size and the paging subsystem
makes sure that for each memory access the corresponding memory
page is loaded, with possible read-ahead. This allows to exploit tem-
poral coherency because a trajectory usually traverses multiple time
steps before having passed a complete cell, and because several trajec-
tories are likely to pass a given cell at different times when computing
flow maps. If the file size exceeds the available address space in case
of 32-bit systems, several files are generated instead, each storing only
a fixed number of time steps. In this case, the high-level access rou-
tine used for integration has to make sure that the file containing the
necessary time is mapped before accessing the data. This is easily ac-
complished and the overall performance does not noticeably degrade
compared to the single-file approach because the corresponding parts
of the files are cached by the soft disk cache of the operating system.

4.2 Finite-Size Lyapunov Exponent
Introduced by Aurell et al. [2], the finite-size Lyapunov exponent
(FSLE) measures the shortest necessary time it takes for two infinites-
imally close particles to separate by a given factor s. The motivation
was to make the measure independent of the advection time T because
different regions of a system often require different choices of T . Au-
rell et al. computed the FSLE by advection of differently oriented par-
ticle pairs.

Here a formulation of the FSLE σ s
to(x) is presented that is based on

the FTLE formulation of Haller (9):

σ s
to(x) =

1
|Ts|

lns,

with minimal |Ts| such that
√

λmax(∆Ts
t0 (x)) = s. (10)

As with the formulation (9) for FTLE, this has the advantages that
trajectories have to be integrated only for each node of the grid, and
that the computed quantities do not substantially depend on the orien-
tation of the seeding of the trajectories. However, in practice there is
often no simple analytic solution to determine the Ts that is necessary
to achieve separation s, because ∆Ts

t0 (x) is based on trajectories com-
puted from discrete fields. Therefore it was chosen to compute FSLE

in an incremental manner. This is achieved by increasing Ts from 0 to
a user-defined upper limit Tmax by n time steps ∆t = Tmax/n, and each
time computing the left-hand side of (10). The trajectories are com-
puted incrementally. If the value gets larger than s, the corresponding
advection time Ts, with linear interpolation in the last time step, is
used for FSLE computation. The corresponding trajectories are not
stopped however, because they are likely to be needed for the gradient
computation at nearby trajectories later on.

Computation of the trajectories is the most expensive part in the
computation of the left-hand side of (10). The computation of the
flow map gradient, the eigenvalues, and the square root is much less
expensive. Therefore one can afford to use a sufficiently high number
of steps n and hence perform these operations n times.

Another issue shows up if filtered AMR ridge extraction is applied
to finite LE variants that are computed incrementally such as FSLE
and FTLEM (see section below). These variants are based on the in-
cremental computation of the flow map and its gradient. As already
mentioned at the end of Section 4.1, the procedure has to be repeated
for each subdivision (and ridge-growth) iteration. For each step in the
incremental computation, the flow map consists of intermediate posi-
tions of trajectories computed at previous subdivision levels, and the
end points of the newly computed trajectories. Therefore all trajecto-
ries and not just the flow map have to be stored during filtered AMR
ridge extraction.

4.3 Finite-Time Lyapunov Exponent Maximum

To further reduce the dependency on parameters, we propose a
new variant of FTLE, the finite-time Lyapunov exponent maximum
(FTLEM):

σ̂T,n
t0 (x) = max

k=1,...,n

1
|k∆t|

ln
‖δδδ (t0 + k∆t)‖
‖δδδ (t0)‖

(11)

with ∆t = T/n, computed in an incremental way, similarly to the FSLE
computation of Section 4.2. The FTLE σ k∆t

t0 (x) is computed at each of
the n time steps according to (9) and its maximum is taken. The mo-
tivation for doing so is to avoid parameters that may require different
choices for different regions of the vector field (which is to some extent
still the case for FSLE), and to capture high expansions along the tra-
jectory instead of only analyzing the final flow map. Taking the max-
imum of the largest FTLE is a quite straightforward decision: it still
measures the maximum expansion. This FTLE variant comes in two
flavors: with or without normalization. Equation (11) is the case with
normalization and represents the true maximum of the FTLE along
the trajectory. If the normalization 1/|k∆t| is omitted, it measures the
(logarithm of) maximum stretching factor along the trajectory, which
avoids high values of (11) at the beginning to dominate the result due
to the normalization. However, this differs only from ridges of FTLE
if trajectories converge later on.

4.4 Separation and Attachment Lines

Separation and attachment lines can be extracted locally as proposed
by Kenwright et al. [16] but also globally using methods from vector
field topology. However, both methods are only able to give an instan-
taneous view to separation and attachment processes. Furthermore,
both are restricted to near-wall flow. One common way to inspect the
interrelations with the interior flow is to seed stream surfaces from the
separation lines or lines of attachment.

Due to their analogy to vector field topology, Lagrangian coherent
structures based on ridges in finite Lyapunov exponents are suited to
visualize both separation and attachment phenomena, and their inter-
relations with the internal flow in a time-dependent way. Attachment
lines can be indicated by the curves where ridges of positive-time fi-
nite Lyapunov exponents attach to a boundary. Separation lines can
be obtained the same way using negative-time finite Lyapunov expo-
nents. If such a situation is observed, the ridges in question convey
information about the process of attachment or separation.
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5 RESULTS

This section presents some results obtained by filtered AMR ridge ex-
traction from finite Lyapunov exponents. Several datasets are exam-
ined and the different finite LE variants are compared. A steady CFD
simulation inside the distributor ring of a Pelton water turbine is ex-
amined and used for the comparison of the finite LE variants in Sec-
tion 5.1. A unsteady CFD simulation of the intake of a hydropower
plant is the target in Section 5.2, and the unsteady CFD simulation in-
side the diffusor of a Francis water turbine is examined in Section 5.3.
We verified by also doing the non-adaptive ridge extraction that no fil-
tered ridges were missed in the present examples, even without using
the “look ahead”. The obtained ridges deviate only slightly from those
of uniform sampling because a range parameter of 2 was used instead
of 5 (see discussion of choice of range in Section 3).

5.1 Pelton Turbine

Filtered AMR ridge extraction was applied to the different finite LE
variants of the steady flow inside the distributor ring of a Pelton wa-
ter turbine. The inspected region is in front of one of the constructs
called sickle that bifurcate the flow into the injectors. The injectors
produce the water jets that impel the runner of the turbine. Figure 2(a)
shows the geometry at the second injector and Figure 2(b) shows the
ridge resulting from the FTLE with some trajectories. The flow comes
from the bottom left and continues to the upper right while part of it is
bifurcated to the upper left. Figure 3 compares the results of the differ-
ent positive-time finite LE variants and Table 1 gives some extraction
details.

(a) (b)

Fig. 2. Pelton dataset at second injector of distributor ring. (a) Geometry.
(b) Filtered AMR ridge extraction from FTLE (red, same as Figure 3(c))
with some trajectories (colored lines). Seeding points of trajectories
visualized by white spheres.

Figure 3(a) shows ridges of FTLE without post-processing and Fig-
ure 3(b) shows additionally the corresponding mesh (the cells have
been shrunk for visualization). The result has been post-processed by
suppressing ridges that were smaller than 2000 triangles, visualized in
Figure 3(c). The FTLE ridges visualize the bifurcation at the sickle
and the recirculation zone at the top (see also Figure 2(b)). Regard-
ing FSLE (Figures 3(d)–3(e)), one can see that the results depend on
the choice of the prescribed separation factor (compare also Table 1).
The ridges of the low-separation FSLE in Figure 3(d) visualize the
near-wall flow whereas the ridges of the high-separation FSLE in Fig-
ure 3(e) mainly show the bifurcation at the sickle. The recirculation
region is captured by both FSLE examples, but not as well as by the
FTLE example of Figure 3(c). Figure 3(f) shows the advantage of
FTLEM over FSLE: it is capable of visualizing both the phenomena
of Figure 3(d) and Figure 3(e) without the need for finding appropriate
FSLE separation factors.

The efficiency gain of filtered AMR ridge extraction over direct
ridge extraction from a uniformly sampled field at corresponding res-
olution was only about 1.4 for the FTLE in the inspected region. This
is because the result contains a lot of ridge regions in the region of

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Pelton dataset at second injector. Filtered AMR ridge extraction
from different finite LE variants. See Table 1 for extraction details. (a)
FTLE ridge without post-processing. (b) same as (a) with mesh. (c)
FTLE ridge with post-processing. (d) FSLE with separation factor 1.5.
(e) FSLE with separation factor 4. (f) FTLEM (similar to (d) and (e)).

interest. However, many applications do not exhibit that dense La-
grangian coherent structures. In order to show the efficiency gain, we
examined a region in front of the first injector of the distributor ring
(see Figure 4 and Table 2). There is only a single filtered ridge in this
region and therefore the efficiency gain is > 4 at the fourth subdivi-
sion level. The efficiency gain would further increase with an increase
of the number of subdivision iterations or with longer advection times
(this test was not performed because the FTLE computation on the
uniform grid already took a considerable amount of time).

5.2 Hydropower Plant Intake

The underlying data of this section is a unsteady CFD simulation in
the intake of a hydropower plant [28] (Figure 5(a)). Filtered AMR
ridge extraction was applied to negative-time FTLE in a region of in-
terest. Ridge regions with FTLE < 0.02 or Hessian λn > −10 were
suppressed and small ridge components were rejected, see Figure 6.
One can see FTLE ridges that wind around the vortex core lines, both
in water and in the air. Another FTLE ridge is consistent with the
water/air interface.
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Table 1. Extraction details for Pelton example. The parameters below
the second horizontal line were not used for mesh refinement, only for
post-processing.

FTLE FSLE FSLE FTLEM
initial grid (nodes) 7x7x5 7x7x5 7x7x5 7x7x5
final grid (nodes) 157204 239551 215491 244651

integration time [s] 0.1 0.1 0.1 0.1
sep. factor s – 1.5 4 –

1/|T | yes yes yes yes
min. scalar smin 23 50 14 22
gradient range 2 2 2 2
ridge range 2 2 2 2

iterations 4 4 4 4
Hess. λmax 0 -150000 -30000 -50000

min. triangle cnt. 2000 2000 2000 2000
Figure 3(c) 3(d) 3(e) 3(f)

(a) (b)

Fig. 4. Pelton dataset at first injector, see Table 2 for performance de-
tails. (a) Filtered AMR ridge extraction for FTLE. The ripples are due
to high FTLE values along the ridge and its approximate alignment with
the sampling grid. This is an inherent problem with discretized FTLE
computation. (b) Together with adaptive mesh.

5.3 Francis Turbine

This section examines the flow of a unsteady CFD simulation in the
draft tube of a Francis water turbine. More precisely, the region in
front of a construct named divider, that bifurcates the flow into the two
channels (Figure 5(b)). Filtered AMR ridge extraction of positive-
time FTLE resulted in several ridges, some of them interacting with
the vortices over time. Ridge regions with FTLE < 10 were rejected
and only the large ridge components were used for visualization (Fig-
ure 7). One FTLE ridge winds around the vortex. This is consistent
with the notion that vortices are coherent structures. The same ridge
also visualizes the bifurcation at the top of the divider.

6 CONCLUSION

Filtered AMR ridge extraction was introduced as a means of efficient
ridge extraction in situations where the underlying scalar field exhibits
only few relevant ridges or can be sampled during ridge extraction.
Although rarely some ridges may be missed, the obtained ridges are
identical to those from a uniform sampling at finest resolution level.
The method has been applied to different variants of finite Lyapunov
exponents in vector fields from CFD simulations. A method for com-
puting the existing FSLE variant was proposed and a new Lyapunov
exponent variant was introduced. A goal of studying this new variant
was to reduce the dependency on parameters such as the integration
time or a prescribed separation factor. Based on our comparison, we
believe that the FTLEM variant can be an interesting alternative to the
existing FTLE or FSLE concepts.

Table 2. Performance analysis for Pelton dataset at first injector. Four
iterations of filtered AMR ridge extraction from FTLE compared to direct
computation on corresponding uniform grid. Achieved speed-up factor
is > 4. See also Figure 4.

direct adaptive
initial grid 193x193x97 (3613153 nodes) 13x13x7 (1183 nodes)
final grid 193x193x97 (3613153 nodes) 298964 nodes

flow map [s] 19953.51 2350.21
FTLE [s] 10.73 30.73

ridge extr. [s] 278.46 2337.16
total [s] 20242.74 4930.72

(a) (b)

Fig. 5. (a) Hydropower plant intake. Water enters the region from the
bottom and flows to the intake of the power plant visible as hole in the
back wall. Air enters the region at the top front and leaves the region
at the top. Water/air interface by isosurface (transparent blue). (b) Draft
tube of Francis turbine in front of divider. The flow is bifurcated at the
divider into the two channels.

Fig. 6. Hydropower plant intake. FTLE ridges (red) with some upstream
trajectories (colored lines) and vortex core lines (white). Seeding points
of trajectories visualized by spheres (white), and water/air interface by
isosurface (transparent blue).
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