
1

On Linear Variational Surface Deformation Methods
Mario Botsch

Computer Graphics Laboratory
ETH Zurich

Olga Sorkine†

Computer Graphics Group
TU Berlin

Abstract— This survey reviews the recent advances in linear
variational mesh deformation techniques. These methods were
developed for editing detailed high-resolution meshes, like those
produced by scanning real-world objects. The challenge of ma-
nipulating such complex surfaces is three-fold: the deformation
technique has to be sufficiently fast, robust, and intuitive and easy
to control to be useful for interactive applications. An intuitive,
and thus predictable, deformation tool should provide physically
plausible and aesthetically pleasing surface deformations, which
in particular requires its geometric details to be preserved.

The methods we survey generally formulate surface deforma-
tion as a global variational optimization problem that addresses
the differential properties of the edited surface. Efficiency and
robustness are achieved by linearizing the underlying objective
functional, such that the global optimization amounts to solving
a sparse linear system of equations. We review the different
deformation energies and detail preservation techniques that
were proposed in the recent years, together with the various
techniques to rectify the linearization artifacts. Our goal is to
provide the reader with a systematic classification and compara-
tive description of the different techniques, revealing the strengths
and weaknesses of each approach in common editing scenarios.

Index Terms— mesh editing, linear optimization, discrete dif-
ferential operators

I. INTRODUCTION

THIS paper presents the recent advances in mesh deforma-
tion and editing techniques. Shape deformation methods

have been an active area of research in geometric modeling,
due to their ever widening range of applications in industrial
and artistic design. Surfaces originating from 3D scans of real-
world objects have become commonly affordable, which in
turn requires developing new tools to deal with such kind of
surfaces: they are usually densely sampled and not smooth, in
the sense that they contain abundant geometric detail at various
scales. More traditional surface editing machinery developed
for, e.g., parametric surfaces or subdivision surfaces is difficult
to apply to such data, therefore various deformation techniques
have evolved that work directly with the irregular triangle
mesh representation.

This survey focuses on linear, surface-based algorithms for
mesh deformation. We address surface-based techniques, as
opposed to space deformations or free-form deformations,
since currently there is no comprehensive survey that reviews
the former, while space-deformations are well exposed in
the literature (see, e.g., [6], [46]). A concise summary of
Laplacian-based mesh processing techniques appeared in [56];
in this survey we expand all recently proposed differential
surface representations linked with linear mesh editing tech-
niques and describe them comparatively. By “linear” we mean

†O. Sorkine is supported by the Alexander von Humboldt Foundation.

that the main ingredient of the deformation algorithm is
a global quadratic variational minimization problem, whose
solution, given certain modeling constraints derived from user
interaction, is the desired modified surface. The variational
minimization of a quadratic functional is achieved by solving a
linear system of equations, hence we call such methods linear.

Linear methods are attractive for several reasons: first, they
are fast, especially when the associated linear system is sparse,
as is the case with all the techniques we shall discuss. The
availability of highly-optimized sparse linear solvers makes
linear techniques very efficient, and at the same time simple
to implement (basically, one only needs to set up the required
linear system and then let the solver library do the rest). In ad-
dition, linear methods are robust: when appropriate boundary
conditions are used, the quadratic energy has a unique global
minimum; moreover, most methods are formulated in such a
way that the resulting deformed surface is a smooth function
of the modeling constraints, thus a slight perturbation of the
constraints changes the resulting surface only by little.

The advantages of linear deformation methods, however,
come with a price: as we shall see, in the most intuitive setting
the surface deformation problem is inherently non-linear,
because it requires deducing local rotations of the surface
based on position displacements. Therefore, a linear method
can only provide an approximate result, or a compromise must
be made in terms of the problem setup, e.g., requiring more
complex interactive input from the user. These trade-offs have
spawned a large variety of deformation techniques, each one
attacking the problem from a different angle. The impressive
amount of literature on the subject that appeared in the past
few years may confuse and overwhelm the casual reader. This
survey is aimed at clarifying the various available methods by
a systematic description of their assumptions on the problem
setup and the underlying deformation mechanisms. Our goal is
to help the reader make practical conclusions about the recited
techniques; namely, we wish to answer the question: under
which circumstances is each method useful, and how to choose
the appropriate algorithm for my particular scenario?

Deformation tools allow the user to interact with a 3D
surface and modify its shape. The quality of a deformation
method is measured by its flexibility, the quality of the
shapes it produces, and its intuitive results. An ultimately
flexible editing tool would permit arbitrary changes in the
surface shape, provided with the right modeling constraints.
Such tools may be, however, too general and difficult to
control. An intuitive tool allows the user to easily edit the
shape, where the manipulation of the controls gives “natural”,
intuitively expected results. What is a natural deformation?
The simplest answer would be, something that behaves like a

2

real-world object, made of physical material. Physically-based
deformation techniques are abundant in computer graphics,
especially in computer animation [48]. However, when aiming
at surface design rather than simulation, a merely physically
plausible result is usually sufficient. Moreover, it is often the
case that the desired deformation only looks natural, but in
fact is not possible or difficult to perform in a real-world
setting with physical materials. Therefore, one is usually after
a deformation that gives aesthetically pleasing results, that
might be physically plausible – but the way to achieve them
is not necessarily physically correct. An aesthetically pleasing
deformation result would preserve the local appearance of
the surface under deformation, and in addition it is generally
desired to make smooth or piecewise-smooth deformations.

In the following, we review the different sides of the
mathematical machinery behind recent surface deformation
methods and classify the particular approaches by their specific
selections of that machinery (Sections II and III). We then
perform a practical comparison between representative meth-
ods (Section IV) that visualizes the main aspects of various
deformation setups and methods. We dedicate a special section
for questions and answers, where we shed light on several
obscure points of the deformation approaches (Section V), and
we conclude in Section VI.

II. MULTIRESOLUTION EDITING

As mentioned above, intuitive, and hence predictable, mod-
eling results can be achieved by emulating a physical surface
deformation process. Motivated by this, one category of mod-
eling approaches starts from a physically accurate formula-
tion of surface deformation, and successively simplifies the
computational model in order to achieve higher efficiency and
increased numerical stability.

In the following we therefore start with the introduction
of the physically accurate non-linear thin shell deformation
model for continuous surfaces and show the typically em-
ployed simplifications and linearizations (Section II-A). After
that we discuss its discretization to triangle meshes (Section II-
B), which then leads to merely solving a sparse linear system
(Section II-C). The linearization will be shown to distort
fine-scale geometric details, which is taken care of by mul-
tiresolution deformations (Section II-D). In Section II-E we
describe approaches related to the presented techniques, and
classify them with respect to the methods they use for surface
deformation and multiresolution detail preservation.

A. Continuous Formulation

The main requirement for physically-based surface deforma-
tions is an elastic energy that measures how much the object
has been deformed from its initial configuration. While for
solid objects this energy basically considers local stretching
within the object, for two-manifold surfaces (so-called thin-
shells) an additional bending term is required.

Let us denote by S ⊂ IR3 a two-manifold surface, param-
eterized by a function p : Ω ⊂ IR2 → S ⊂ IR3. This surface
is to be deformed to S ′ by adding to each point p (u, v)

a displacement vector d (u, v), such that S ′ = p′ (Ω) with
p′ = p + d.

It is known from differential geometry [19] that the first and
second fundamental forms, I (u, v) , II (u, v) ∈ IR2×2, can be
used to measure geometrically intrinsic (i.e., parameterization
independent) properties of S, such as lengths, areas, and
curvatures. The change of fundamental forms therefore yields
a measure of stretching and bending [64]:

Eshell (S ′) =
∫

Ω

ks

∥∥I′ − I
∥∥2

F
+ kb

∥∥II′ − II
∥∥2

F
dudv , (1)

where I′, II′ are the fundamental forms of S ′, ‖·‖F denotes
a (weighted) Frobenius norm, and the stiffness parameters ks

and kb are used to control the resistance to stretching and
bending. In addition, the energy (1) is invariant under rigid
motions (rotation plus translation), which is a geometrically
intuitive requirement.

In a modeling application one is typically not interested in a
dynamic time-dependent simulation, but instead directly solves
for the rest state of the deformation process. This requires
the minimization of the elastic energy (1) subject to user-
defined boundary constraints. As shown in Fig. 1, this typically
means to fix certain surface parts F ⊂ S and to prescribe
displacements for the so-called handle region(s) H ⊂ S. In an
interactive application S ′ has to be re-computed by minimizing
Eshell each time the user manipulates the boundary constraints,
for instance by moving the handle region H.

However, this non-linear minimization is computationally
too expensive for interactive applications. Hence, it is simpli-
fied by replacing the change of first and second fundamental
forms by first and second order partial derivatives of the
displacement function d [15], [68]:

Ẽshell (d) =
∫

Ω

ks

(
‖du‖2 + ‖dv‖2

)
+ (2)

kb

(
‖duu‖2 + 2 ‖duv‖2 + ‖dvv‖2

)
dudv ,

where we use the notation dx = ∂
∂xd and dxy = ∂2

∂x∂yd.
The minimization of (2) can be performed efficiently by

applying variational calculus, which yields its so-called Euler-
Lagrange PDE

−ks ∆d + kb ∆2d = 0 , (3)

which characterizes the minimizer of (2). ∆ and ∆2 represent
the Laplacian and the bi-Laplacian operator, respectively:

∆d = div∇d = duu + dvv ,

∆2d = ∆ (∆d) = duuuu + 2duuvv + dvvvv .

S ′ can therefore be found directly by solving (3), again subject
to suitable boundary constraints.

In order for the change of second derivatives in (2) to closely
approximate the change of surface curvatures (i.e., bending),
the parameterization p should be as close to isometric as
possible. Because of that, Ω is typically chosen to equal the
initial surface S, such that d : S → IR3 is defined on the
manifold S itself. This is conceptually similar to the data-
dependent functionals of Greiner et al. [26].

3

(a) (b) (c) (d)
Fig. 1. The original surface S (a) is edited by minimizing its deformation energy, subject to user-defined constraints that fix the gray part F of the surface
and prescribe the transformation of the yellow handle region H. The linearized energy (2) consists of stretching and bending terms, and the examples show
pure stretching with ks = 1, kb = 0 (b), pure bending with ks = 0, kb = 1 (c), and a weighted combination with ks = 1, kb = 10 (d).

As a consequence, the Laplace operator ∆ w.r.t. the
parametrization p turns into the Laplace-Beltrami operator
∆S = divS∇S w.r.t. the manifold S [19]:

−ks ∆Sd + kb ∆2
Sd = 0. (4)

Notice that this variational minimization is closely related
to the design of fair surfaces [47], [68], where surface area
and curvature are minimized instead of their changes, i.e.,
stretching and bending. The linearized membrane and thin-
plate energies corresponding to (2) are defined as

Ẽmemb (p) =
∫

Ω

‖pu‖
2 + ‖pv‖

2 dudv ,

Ẽplate (p) =
∫

Ω

‖puu‖
2 + 2 ‖puv‖

2 + ‖pvv‖
2 dudv . (5)

Analogously to (4) their corresponding Euler-Lagrange equa-
tions are −∆Sp = 0 and ∆2

Sp = 0, respectively. Since the
Laplacians or bi-Laplacians vanish on the resulting surfaces,
those are stationary surfaces of Laplacian and bi-Laplacian
flows typically used in surface smoothing [18], [63]:

pt = λ∆Sp and pt = −λ∆2
Sp .

The order k of partial derivatives in the energy or in the
corresponding Euler-Lagrange equations (−1)k ∆k

Sd = 0
defines the maximum continuity Ck−1 for interpolating dis-
placement constraints [10]. Hence, minimizing (2) by solving
(4) provides C1 continuous surface deformations, as can also
be observed in Fig. 1.

B. Discretization
The energies and PDEs presented so far were formulated

for continuous two-manifold parametric surfaces S = p (Ω).
However, our final goal is to represent the surface S by
a triangle mesh, since this allows for higher topological
flexibility and computational efficiency [13]. In the following
we denote by S a triangle mesh, whose topology is determined
by n vertices (v1, . . . , vn) and m triangles (t1, . . . , tm), ti ∈
{1, . . . , n}3, and whose piecewise linear geometric embedding
is defined by the vertex positions pi = p (vi) ∈ IR3.

In the discrete mesh setting, the user selects certain vertices
as the fixed part F and the handle region H, and typically
prescribes either positions p′i = ci ∈ S ′ or corresponding
displacements di = ci−pi for them. For the rest of the paper,
let us assume w.l.o.g. that from the n vertices (v1, . . . , vn) the
first n′ vertices are free, while the last k = n − n′ vertices
(vn′+1, . . . , vn) are constrained, i.e., they constitute the fixed
part F and handle region H.

In order to discretize the above equations for triangle
meshes one can either employ finite differences or finite
elements. The Finite Element Method (FEM) leads to more
accurate approximations in general, but for thin shell problems
like (1) or (2) it theoretically requires C1 continuous shape
functions [5]. In particular on triangulated manifolds those are
rather complicated to design [15]. Mesh subdivision provides
an elegant formulation for C1 basis functions, as proposed
in [16], [17] and [65] for static and dynamic deformations,
respectively. As an alternative, so-called non-conforming C0

elements are frequently and successfully employed in prac-
tice [32], although lacking some theoretical guarantees.

In comparison to FEM, a discretization based on finite
differences is considerably easier to use, in particular since the
Euler-Lagrange equations (4) only require a discretization of
the Laplace-Beltrami operator. Given a piecewise linear scalar
function f : S → IR defined on the mesh S, its discrete
Laplace-Beltrami at a vertex vi has the form

∆Sf (vi) = wi

∑
vj∈N1(vi)

wij (f(vj)− f(vi)) , (6)

where vj ∈ N1 (vi) are the incident one-ring neighbors of
vi (cf. Fig. 2). The discretization depends on the per-vertex
normalization weights wi and the edge weights wij = wji.
While there are several variations of these weights (see also
a comparison in Section V-A), the de-facto standard is the
cotangent discretization [18], [45], [51]:

wi =
1
Ai

, wij =
1
2

(cot αij + cot βij) , (7)

where αij and βij are the two angles opposite to the edge
(vi, vj), and Ai is the Voronoi area of vertex vi. The latter is
defined in [45] as the area of the surface region built by con-
necting incident edges’ midpoints with triangle circumcenters
(for acute triangles) or midpoints of opposite edges (for obtuse
triangles), as shown in Fig. 2.

αij

vi

vj

vj−1

vj+1
βij

Fig. 2. The angles αij and βij and the (dark grey) Voronoi area Ai used to
discretize the Laplace-Beltrami ∆S at a vertex vi in equations (6) and (7).

4

Higher-order Laplacians are then simply defined recur-
sively:

∆k
Sf (vi) = wi

∑
vj∈N1(vi)

wij

(
∆k−1
S f (vj)−∆k−1

S f (vi)
)

,

∆0
Sf (vi) = f (vi) .

C. Numerical Solution
Using the discretization (6), the Laplace-Beltrami operator

for the whole mesh can be written in matrix notation ∆Sf (v1)
...

∆Sf (vn)

 = M−1 Ls︸ ︷︷ ︸
L

·

 f (v1)
...

f (vn)

where M is a diagonal “mass” matrix of the normalization
weights Mii = 1/wi = Ai, and Ls is a symmetric matrix
containing the edge weights wij :

(Ls)ij =

−

∑
vk∈N1(vi)

wik , i = j ,

wij , vj ∈ N1 (vi) ,

0 , otherwise .

The Euler-Lagrange equation (4) then leads to a sparse n×n
linear system (

−ksL + kdL2
)
d = 0 .

The boundary constraints are incorporated into this system by
moving each column corresponding to a constrained vertex
vi ∈ F∪H to the right-hand side, and removing the respective
row from the system (see also Section V-C). This yields a
non-zero right-hand side b ∈ IRn′×3 and leads to a n′ × n′

system that is solved for the x-, y-, and z-components of the
displacements d = (d1, . . . ,dn′). Notice that for notational
convenience we still denote the n′×n′ sub-matrices by L and
L2. Pre-multiplying the above system by M finally yields the
symmetric system(

−ksLs + kdLsM−1Ls

)
d = Mb , (8)

which in addition can be shown to be positive definite [51].
In an interactive application the above linear system has to

be solved for the deformed surface each time the user changes
the boundary constraints, e.g., by moving the constrained
points, since that changes the right-hand side b. Since the
system is sparse, symmetric, and positive definite, an iterative
method like conjugate gradients [25] could be employed, but
the resulting O(n2) computational complexity is prohibitive
for large meshes. Solving the system on a multigrid hierarchy
of successively coarsened meshes, as proposed in [10], [34],
yields linear O(n) complexity and hence also works for
complex meshes. However, the implementation of an efficient
multigrid solver can be quite complex, since it requires several
problem-dependent design decisions [1], [54].

While multigrid solvers are an efficient tool, they do not
exploit the fact that the same linear system (8) is solved
many times (three times each frame), only for different right-
hand sides Mb. In contrast, sparse direct Cholesky solvers
first factor the matrix, such that for each new right-hand
side only an efficient back-substitution has to be performed.

Geometric
Details

Multiresolution Editing

De
co

m
po

sit
io

n Reconstruction

S S
′

B

Editing

B
′

D

Fig. 3. A multiresolution editing framework consists of three main operators:
the decomposition operator, which separates the low and high frequencies, the
editing operator, which deforms the low frequencies, and the reconstruction
operator, which adds the details back onto the modified base surface.

Thanks to a matrix pre-ordering the resulting Cholesky factor
is also sparse, leading to basically linear complexity of both
the factorization and the back-substitution. In comparison with
iterative multigrid solvers the direct solvers are not only easier
to use, but also provide better performance for so-called
multiple-right-hand-side problems [7], [54].

D. Multiresolution Hierarchies

The deformation techniques described above approximate
the non-linear shell energy (1) by the quadratic energy (2)
in order to reduce the per-frame costs to the solution of the
linear system (8). Although the global energy minimization
guarantees smooth and C1 continuous surface deformations,
the linearization causes geometric details and protruding fea-
tures to be distorted.

As can be seen in Fig. 4, even a pure translation of the
handle H is intuitively expected to locally rotate the geometric
details. Unfortunately, determining the required local rotations
from position constraints alone is a non-linear problem, and
therefore cannot be solved by a linearized technique (cf.
Fig. 4b). In order to still be able to achieve intuitive detail
preservation while using a linear deformation technique, one
can complement the linear deformation model by a so-called
multiresolution or multi-scale hierarchy.

The main idea of multiresolution deformations is to consider
the surface S as a “geometric signal”, and to separate the low
frequencies from the high frequencies. The low frequencies
constitute the global shape of the model and are represented
by a smooth base surface B. The high frequencies are the
difference between S and B, i.e., the geometric details D =
S 	B. The original surface S can be reconstructed by adding
the geometric details to the base surface, S = B⊕D. A mul-
tiresolution deformation can now be computed by deforming
B to B′ and reconstructing S ′ = B′ ⊕ D. This modifies the
global shape B, but preserves the fine-scale details D. The
whole process is schematically depicted in Fig. 3.

5

(a) (b) (c) (d) (e)
Fig. 4. The rightmost strip H of the bumpy plane (a) is translated up. The intuitive local rotations of geometric details cannot be achieved by a linearized
deformation alone (8), as can be seen in (b), but require a multiresolution decomposition. Normal displacements (c) correctly rotate local details, but cause
distortions under bending deformations, which can be seen in the left-most row of bumps. The non-linear displacement volumes (d) as well as the linear
deformation transfer (e) provide more intuitive results.

Note that in other contexts the term multiresolution hierar-
chy is also used to denote topological hierarchies of coarser
and coarser meshes [24]. In contrast, we are considering it as
geometric hierarchy of smoother and smoother meshes. While
for subdivision surface these two concepts are coupled, for
arbitrary irregular meshes they are not.

In order to compute the low frequency base surface B one
typically removes high frequencies from S by mesh smoothing
[18], [29], [63]. In the example shown in Fig. 3 the thin-plate
energy (5) was minimized by solving ∆2

Sp = 0. The special
operators 	 and ⊕ are the multiresolution decomposition and
reconstruction, and depend on the chosen representation of
the geometric details D. This, and the way B is computed, is
where the existing multiresolution editing techniques differ.

A straightforward approach is to restrict S and B to have the
same connectivity, and to encode their geometric difference D
by per-vertex displacement vectors hi [29], [34], [74]:

pi = bi + hi , hi ∈ IR3,

where bi ∈ B is the vertex corresponding to pi ∈ S. The
vectors hi have to be encoded in local frames w.r.t. B [22],
determined by the normal vector ni and two vectors spanning
the tangent plane. When the base surface B is deformed to B′,
the displacement vectors rotate according to the rotations of
the base surface’s local frames, which then leads to a plausible
detail reconstruction for S ′.

However, as we will see below, long displacement vectors
might lead to instabilities, in particular for bending deforma-
tions. As a consequence, for numerical robustness the vectors
should be as short as possible, which is the case if they connect
vertices pi ∈ S to their closest surface points on B instead of
to their corresponding vertices of B. This idea leads to normal
displacements that are perpendicular to B, i.e., parallel to its
normal field n:

pi = bi + hi · ni , hi ∈ IR. (9)

The difference in length of general displacement vectors and
normal displacements typically depends on how much B dif-
fers from S. For instance, in Fig. 3 the general displacements
are in average about 9 times longer than normal displacements.

Notice, however, that normal displacements require a re-
sampling of either S [30], [37] or B [35]. Since the re-
sampling of the smooth surface B causes fewer aliasing

artifacts than that of the high-frequency surface S, the latter is
the preferred approach. Hence, for each point pi ∈ S a local
Newton iteration [35] finds a base point bi ∈ B such that

(pi − bi)× ni = 0.

As a consequence, the base points bi ∈ B are not necessarily
vertices of B. This also implies that the connectivity of S and
B is no longer restricted to be identical, which can be exploited
in order to remesh the base surface B for the sake of higher
numerical robustness [11].

The main problem of normal displacements is that neigh-
boring displacement vectors are not coupled in any way.
When bending the surface in a convex or concave manner,
the angle between neighboring vectors increases or decreases,
leading to an undesired change of volume (cf. Figs. 4c, 5a).
If displacement vectors cross each other, which happens if the
curvature of B′ becomes larger than the displacement length
hi, it might even result in local self-intersections.

These problems are addressed by displacement volumes [9].
Each triangle

(
pi,pj ,pk

)
of S, together with the correspond-

ing points (bi,bj ,bk) on B, defines a triangular a prism,
the volume of which is kept constant during deformations.
The local volume preservation leads to more intuitive detail
reconstructions and avoids local self-intersections (cf. Figs. 4d,
5b). However, the improved detail preservation comes at the
higher computational cost of a non-linear detail reconstruction
process.

Botsch et al. [14] recently proposed a multiresolution repre-
sentation that provides results similar to displacement volumes
(cf. Figs. 4e, 5c), but requires to solve a sparse linear system
only. It employs the deformation transfer framework [61] in
order to transfer the deformation B 7→ B′ to the fine-scale
surface S, which then yields S ′. They also show how to
simplify the actual computation of the deformation transfer,
such that the approach only requires the solution of a linear
Poisson system (see also Section V-E).

E. Related Approaches
In this section we list and discuss several deformation

approaches related to the techniques described so far, and
categorize them according to the energy minimization, mul-
tiresolution representation, and surface representation they
employ.

6

(a) (b) (c)
Fig. 5. A concave bending of the bumpy plane of Fig. 4. Multiresolution representations based on normal displacements (a) unnaturally distort geometric
details and almost lead to self-intersections, whereas displacement volumes (b) and deformation transfer (c) achieve more natural results.

1) Subdivision Surfaces: Zorin et al. presented one of the
first multiresolution editing approaches [74]. Their method is
based on subdivision surfaces, and the geometric difference
between successive subdivision hierarchy levels is encoded by
general displacement vectors. Similarly, the displaced subdivi-
sion surfaces of Lee et al. [37] also represent the base surface
by a subdivision surface, but use normal displacements for
the geometric details. In both cases, if the input mesh is not
a subdivision surface, it has to be remeshed to subdivision
connectivity, which might lead to resampling artifacts.

To overcome this, Marinov and Kobbelt [44] represent
only the base surface B by a subdivision surface, and use
normal displacements to encode the difference between B
and the original irregular mesh S. Marinov et al. [43] also
presented a hardware-accelerated GPU implementation of the
latter multiresolution deformation technique.

The subdivision basis functions guarantee smooth deforma-
tions for these approaches, but do not necessarily minimize a
physically-based deformation energy. The main drawback of
subdivision-based methods is that global deformations have
to be controlled on a coarse subdivision level, where only a
small number of control points is available. This limits the
modeling flexibility, since the control points might not be at
the right position to perform a desired deformation. Moreover,
the support of the deformation is pre-determined by the coarse
control grid and hence cannot be chosen precisely on the
detailed mesh.

2) Irregular Meshes: Kobbelt et al. [34] deform irregular
triangle meshes based on the variational energy minimization
as described in the previous sections, which therefore leads to
high quality physically-based surface deformations. In contrast
to subdivision-based approaches, their multiresolution hierar-
chy is based on levels of different smoothness, not of different
mesh complexities. The hierarchy levels are connected by
normal displacements. Only to speed up the solution of the
linear system (8) do they employ a multigrid hierarchy of
topologically coarsened meshes. Their approach allows to
prescribe constraints for each individual vertex of S, which
are then interpolated by an energy minimizing, hence fair,
deformation function d.

Guskov et al. [29] apply hierarchical smoothing on a mul-
tiresolution pyramid of irregular meshes, which are coupled by
general displacement vectors. However, similar to subdivision-
based methods, their approach is limited by the small number

of control points available on the coarse hierarchy levels. Like
the subdivision approaches, their deformations are smooth in
a Ck sense, but do not necessarily minimize a bending energy.

Lee [38] first parameterizes the editing area over the 2D
unit square, interpolates user-defined deformation constraints
there, and finally maps per-vertex displacements back onto
the 3D surface S. This approach incorporates precise per-
vertex constraints, and the multi-level B-spline interpolation
allows to control their influence radius. However, the required
parameterization might lead to geometric distortions.

Botsch and Kobbelt [10] extend [34] by anisotropic and
tri-harmonic deformations, and provide control of boundary
continuity on a per-vertex basis. They also exploit the fact that
the handle vertices H are typically transformed only affinely
by the user. This allows to pre-compute linear basis functions
for the deformation d, which in each frame can be evaluated
more efficiently than solving the linear system (8). While
normal displacements were used in the original paper [10],
a multiresolution representation based on deformation transfer
was shown in [14] to yield better results, in particular for
bending deformations.

While all these approaches work well in many cases, there
are limitations inherent to the linearization: large deforma-
tions, in particular large rotations, might cause artifacts when
performed in a single step (Section IV). In addition, all
approaches need a multiresolution decomposition to correctly
deform fine-scale details, which for geometrically or topologi-
cally complex models might require a more complicated multi-
level hierarchy. These drawbacks were a major motivation for
the deformation approaches based on differential coordinates,
which are described in the next section.

III. DEFORMATION BASED ON DIFFERENTIAL SURFACE
REPRESENTATION

Surface deformation approaches based on differential rep-
resentations have gained significant popularity over the past
three years, probably mainly due to their robustness, speed,
and ease of implementation. The main idea behind this family
of deformation techniques is to use a surface representation
that puts the local differential properties in focus, and to
preserve these differential properties under deformation, as-
piring to obtain an intuitive, detail-preserving deformation
result. Hence, the motivation is to achieve a globally smooth
deformation, induced by the modeling constraints, that at the

7

same time preserves the local characteristics of the surface.
Generally speaking, this is achieved by constructing the dif-
ferential representation of the input surface, then manipulating
this representation according to the modeling constraints, and
finally performing “integration”, or reconstruction of the sur-
face coordinates from the modified differential representation.
Various techniques differ by the particular differential prop-
erties they use (Section III-A) and the manipulation thereof
(Section III-B), but the general framework remains the same.

Differential surface manipulation was inspired by gradient-
domain image manipulation. It has been noticed that the
gradients of the image intensity function (or the three color
channels) contain important visual information that humans
are sensitive to; many image techniques exploit this fact by
applying certain manipulations to the input image gradients
g = ∇I , and then reconstruct the resulting image by a
global optimization process that looks for an image I ′ whose
gradients are as close as possible to the modified gradients g′:

I ′ = argmin
I′

∫
Ω

‖∇I ′ − g′‖2 dxdy ,

where Ω denotes the domain of the image manipulation (the
rectangular grid or part of it). By deriving the Euler-Lagrange
equations of the functional above, we arrive at the famous
Poisson equation

∆I ′ = div g′ , (10)

to which some boundary conditions are added. One exam-
ple of using this image manipulation framework is high
dynamic range compression [21], where the input image I
has intensities with too high a contrast to display it on a
conventional display. The compression method modifies the
intensity gradients g such that strong contrasts are attenuated,
while small intensity variations are preserved. The resulting
image is reconstructed by solving the Poisson equation with
Neumann boundary conditions.

Another example of gradient manipulation that comes even
closer to surface editing is Poisson Image Editing [50]. It is
a set of image editing tools, the most prominent one being
Poisson cloning, where a part cut out from one image is
seamlessly pasted onto another image. The correct seamless
transition between the target background image and the pasted
source image part is achieved by feeding the right Dirichlet
boundary conditions to the Poisson equation: the gradients of
the image inside the pasted region Ω are asked to equal the
source image gradients, while the boundary conditions require
the image values along the boundary to equal the target image:

I ′|∂Ω = Itarget|∂Ω .

In the spirit of the above techniques, differential surface
manipulation approaches try to follow the same framework:
manipulate the differential representation according to the task,
and then reconstruct the surface by means of a quadratic
optimization with appropriate boundary conditions that stem
from the user-defined modeling constraints (for the most part,
Dirichlet boundary conditions that would prescribe positions

of some points on the surface). The discrete energy these
approaches minimize has usually the form

p′ = argmin
p′

∑
i

Ai ‖D (p′i)− li‖
2

, (11)

where D is an operator that extracts the differential quantities
li = D(pi) from the surface geometry and Ai are local area
elements, such as the Voronoi areas defined in Section II-B.
If D can be expressed as a global linear operator D, and
we denote by M the diagonal matrix containing the weights
Ai, the above minimization sums up to solving the normal
equations

DT MDp′ = DT Ml . (12)

However, surfaces in 3D have several significant differences
from images: they are generally not height functions, and when
represented by polygonal meshes they are not sampled over
a regular domain. Moreover, there is a geometric connection
between the three mesh coordinate functions (x, y, z), such
that manipulating them in a decoupled fashion is possible only
after some linearization assumptions. These fundamental dif-
ferences prevent direct carry-over of the technology developed
for images onto surfaces, and the techniques we review next
deal with the challenge in various ways.

A. Differential Representations
Here we review the different differential representations and

show their basic surface reconstruction methods.

1) Gradient-based representation: The first approach to di-
rectly translate the gradient-based approach from image edit-
ing to surface editing [71] was to consider the gradients of
the surface coordinate functions x, y, z, defined over the
base domain Ω (which is typically the input mesh S). In the
continuous formulation, the deformed surface is defined by the
coordinate functions x′, y′, z′ that minimize∫

Ω

‖∇x′ − gx‖2dudv

(and the same for y′ and z′), under some modeling constraints,
where gx = ∇x are the gradients of the original surface
coordinate functions. The Euler-Lagrange equation of this
minimization is the Poisson equation

∆x′ = div gx . (13)

It is simple to define the gradients of the coordinate func-
tions in the discrete setting: the mesh is a piecewise-linear
surface and thus the gradients of the coordinate functions are
constant over each face; intuitively, when the base domain is
the mesh itself then in each triangle, the gradient of the x
function is the projection of the unit x-axis vector (1, 0, 0)T

onto the triangle’s plane, and similarly for the other two
coordinate functions. Formally, let a piecewise linear scalar
function f on the domain mesh S be defined by barycentric
interpolation of per-vertex values fi = f (vi), such that

f (u, v) =
n∑

i=1

fi φi (u, v) ,

8

where (u, v) are parameters over the domain mesh and φi (·)
are the piecewise linear “hat” basis functions associated with
the domain mesh vertices, i.e., φi (vk) = δik. The gradient of
f is then

∇f (u, v) =
n∑

i=1

fi∇φi (u, v) . (14)

The gradients ∇φi (u, v) are constant within each domain
mesh face; if (pi,pj ,pk) are the vertices of a domain mesh
triangle then the gradients of the corresponding hat functions
φi, φj , φk are

(∇φi,∇φj ,∇φk) =

 (pi − pk)T(
pj − pk

)T

nT

−1 1 0 −1

0 1 −1
0 0 0

 ,

where n is the unit normal of the triangle. This formulation
ensures that the gradients lie in the triangle’s plane (for details
on the derivation see [14]). One can formulate (14) using a
global operator G, expressed as a 3m×n matrix that multiplies
the n-vector f of the discrete values fi to obtain a vector of m
stacked gradients, each gradient having 3 spatial coordinates
(m being the number of triangles). Thus, one can write down
the following formula for the input mesh:

Gx′ = gx ,

and the same for the other two coordinate functions. When
the gradients of the surface are known (as functions over the
domain mesh) and the coordinate functions are unknown, we
can find them by minimizing (11) with G being the differential
operator. Thus we solve (12), where the 3m × 3m weight
matrix M contains the areas of the triangles:

GT MGx′ = GT Mgx ,

The matrix GT M corresponds to the discrete divergence
operator associated with the domain mesh, and GT MG is
non other than the cotangent discretization of the Laplace-
Beltrami operator [14], discussed in Section II-B, so we can
simply write

Lsx′ = GT Mgx , (15)

which is the discretized version of (13).
To deform a surface using this gradient representation, a di-

rect adaptation of Poisson Image Editing [50] would be simply
to add Dirichlet boundary conditions to (15), corresponding to
user-defined modeling constraints

p′i = ci (16)

for the fixed vertices F and handle vertices H.
However, the result of such editing approach is not satisfac-

tory, because it tries to preserve the original mesh gradients,
with their orientation in the global coordinate system. This
ignores the fact that in the deformed surface the gradients
should rotate, since they always lie in the triangles’ planes,
which transform as a result of the surface deformation. The
effect is demonstrated in Fig. 6b, clearly showing that the
resulting deformation is not intuitive.

This local transformations problem is central in all dif-
ferential editing approaches; it stems from the fact that the

(a) (b) (c) (d)
Fig. 6. Using gradient-based editing to bend the cylinder (a) by 90◦.
Reconstructing the mesh from new handle positions, but original gradients
distorts the object (b). Applying damped local rotations derived from (25) to
the individual triangles breaks up the mesh (c), but solving the Poisson system
(15) re-connects it and yields the desired result (d).

representation is dependent on the particular placement of
the surface in space, i.e., it is not rigid-invariant, and thus
when the surface deforms, the representation must be updated.
Unfortunately, it is a chicken-and-egg problem in its essence,
because the deformed surface is unknown. We review the
different approaches to obtain the local transformations in
Section III-B.

2) Laplacian-based representation: Laplacian-based ap-
proaches represent the surface by the so-called differential co-
ordinates or Laplacian coordinates [3], [59]. These coordinates
are obtained by applying the Laplacian operator to the mesh
vertices, i.e., taking f ≡ p in (6); the resulting vector is the
mean curvature normal:

δi = ∆S (pi) = −Hini , (17)

where Hi is the mean curvature H = κ1 +κ2 at vi. Modeling
directly with these coordinates is meant to circumvent the
need to decompose the surface into a low-frequency base
surface and high-frequency details, as in the multiresolution
approaches discussed in Section II-D.

Laplacian editing was developed concurrently with gradient-
based editing, and similarly to the latter, the first naive attempt
would be to formulate the deformation by directly minimizing
the difference from the input surface coordinates δi. In the
continuous setting the energy minimization is formulated as

min
p′

∫
Ω

‖∆p′ − δ‖2 dudv . (18)

The Euler-Lagrange equation derived for the above minimiza-
tion is

∆2p′ = ∆δ .

When we consider this equation taking the input surface as the
parameter domain, the Laplace operator turns into Laplace-
Beltrami ∆S and we arrive at the discretized equation

L2p′ = Lδ , (19)

which can be separated into three coordinate components; the
equation is constrained by the modeling constraints of the form
(16). It is also possible to arrive at this equation by discretizing
the continuous energy (18):

min
p′

∑
i

Ai ‖∆S (p′i)− δi‖
2

. (20)

9

This minimization amounts to solving the normal equations
(12) with L = M−1Ls as the differential operator and the
Voronoi areas stacked into the diagonal matrix M:

LT MLp′ = LT Mδ(
M−1Ls

)T
M

(
M−1Ls

)
p′ =

(
M−1Ls

)T
Mδ

LsM−1Lsp′ = Lsδ . (21)

Note that if we multiply both sides of (21) by M−1 we arrive
at the bi-Laplacian equation (19). Moreover, if the right-hand
side is set to zero (i.e., δ = 0), the equation solves for the
minimizer of the linear thin-plate energy (5). This formulation
was used to define the so-called Least-Squares Meshes [58]
– smooth surfaces formed by mesh connectivity and a sparse
set of control points with geometry, incorporated by (16).

The positional constraints (16) may be either incorporated
as hard or soft constraints. Hard constraints lead to elimination
of corresponding rows and columns of the system matrix,
whereas soft constraints are added as additional terms of the
form λ ‖pi − ci‖2 to the discrete energy functional in (20)
(see Section V for details). Although the system is very simple
and can be efficiently solved by sparse direct methodologies
mentioned earlier, the results only look satisfactory when the
starting surface is a membrane or thin-plate (i.e., the right-hand
side of (21) is zero). In any other case the surface details are
distorted for the same reasons as with gradient-based editing
or the variational minimization discussed in Section II: the
system tries to preserve the orientation of the Laplacian vectors
w.r.t. the global coordinate system, whereas in reality they
should rotate with the deformed surface.

3) Local frame based representation: In search of a rigid-
invariant shape representation, frame-based representation [42]
turns to classical differential geometry and attempts to import
elements from the theory of moving frames [28] into the
discrete setting. The representation is inspired by the geometric
invariance of the fundamental forms and aspires to formulate
the deformation problem in the spirit of the elastic energy (1).
This frame-based representation consists of a set of orthonor-
mal frames (ai,bi,ni) attached to each mesh vertex and sets
of coefficients describing the relations between the frames, as
well as the coordinates of the mesh one-rings with respect to
the frames. More precisely, the relationship between the local
frames of two neighboring vertices vi, vj in the input surface
is recorded by the coefficients of a 3×3 matrix Aij such that

(ai − aj ,bi − bj ,ni − nj) = Aij (ai,bi,ni) . (22)

The one-ring vectors are encoded with respect to the local
frame by a set of 3 coefficients (αij , βij , γij) per edge:

pj − pi = αijai + βijbi + γijni . (23)

It is easy to verify that if the choice of the local frames
is rotation-invariant, so are the coefficients Aij , αij , βij , γij ,
which singles out this representation from other differential
coordinates. The (over-determined) linear equation (23) can
be used to model deformations in two steps: first, the local
frames of the deformed surface are determined by one of the
methods described in the next section, and then the vertex

positions are solved for in the least-squares sense using (23),
where the frames obtained in the first step are plugged into
the right-hand side. Note that the normal equations matrix of
(23) is the symmetric uniform Laplacian.

B. Local transformations
As mentioned above, the main problem in detail-preserving

surface deformation is to correctly define the local transforma-
tions that occur during deformation. By “correct” one usually
means such deformations that the local surface features retain
their relative orientation and possibly their size. Therefore the
local transformations should be as close as possible to pure
rotations and translations. In some cases isotropic scales are
also admissible. There are several methods to define the local
transformations in the literature, as we describe below. Note
that the problem is inherently non-linear, so one can only offer
a reasonable estimate if one desires to avoid global non-linear
optimizations. Once the local transformations Ti are defined,
the differential representation of the input mesh is transformed
by these, and the associated reconstruction problem (11) is
solved to obtain the deformed surface:

min
p′

∑
i

Ai ‖D (p′i)−Ti (li)‖
2

. (24)

1) Geodesic propagation: This method of local transforma-
tion assignment relies on additional user input to disambiguate
the local transformations that should occur in the deformed
surface. In addition to positional constraints (16) the user is
required to provide a transformation matrix for the handle H
he/she manipulates (this can be deduced, e.g., from a transform
UI attached to the handle where the user visually manipulates
the rotation axes). The provided handle transformation T
is decomposed into rotational and scaling/shear components:
T = RS [55]; both are interpolated over the region of interest
(ROI) on the mesh according to the geodesic distance from the
handle:

Ti = slerp(R, I, 1− si) · ((1− si)S + siI) , (25)

where slerp denotes quaternion interpolation and si is a value
between 0 and 1, proportional to the geodesic distance from
the handle H:

si =
dist(pi,F)

dist(pi,F) + dist(pi,H)
.

In this fashion, the handle transformation is propagated over
the region of interest and small-scale surface details are
properly transformed.

2) Harmonic propagation: The discrete geodesic distances
turned out to be a suboptimal parameter to propagate the
transformations because they may be non-smooth and also
attenuate the transformations of highly-protruding features too
much [42], [72]. Harmonic functions were proposed instead:
the values of si are determined from a harmonic scalar field
s defined over the mesh vertices by the Laplace equation

Ls = 0 , (26)

where the Dirichlet boundary conditions require si = 0
for vi ∈ F and si = 1 for vi ∈ H. This results in a

10

Fig. 7. A non-uniform twist using the material-aware deformation tech-
nique [52], with stiffness weights color-coded in the bottom image.

smooth transformation propagation, with the added advantage
of economic computation, when the matrix in (26) is the same
matrix used for editing (15), thus the same factorization can
be used.

3) Material-aware propagation: It is possible to control the
surface material properties, namely local stiffness, by carefully
designing the interpolation weights si, as was done in [52].
The user may define stiffness by a painting interface, which
provides a scalar field ϕij over the mesh edges; the interpo-
lation weights are then determined by solving the following
weighted quadratic minimization:

min
s

∑
j∈N1(vi)

ϕij ‖si − sj‖2 .

Thus, where the stiffness parameter ϕij is higher, the inter-
polation parameters tend to be closer, which assigns similar
local transformations and makes the surface locally stiffer (cf.
Fig. 7). The constraints of the minimization above are the same
as in harmonic propagation, i.e., 0 for fixed vertices F and 1
for the handle H. Curiously, the minimization of the quadratic
energy above leads to a Laplace equation (see [20] for details),
weighted by the stiffness parameters.

Note that any transformation propagation technique would
only work if the transformation of the handle (e.g. rotation)
is actually provided. If the handle is only translated, all
propagated local transformations will equal the identity. This
phenomenon is called translation-insensitivity [12], because
the method might not generate intuitive local rotations when
the modeling constraint contains translation.

4) Explicit optimization: This method produces the local
transformations by solving for the local frames of the de-
formed surface in the least-squares sense [42], using (22). The
coefficients are derived from the original mesh. The idea is
to optimize the local transformations so as to preserve the
relationships between the local frames. The handle frames
need to be constrained, similarly to the transformation prop-
agation methods, such that this method is also translation-
insensitive. Note that the least-squares solution might produce
non-orthonormal frames, which may lead to area and volume
shrinkage. If the modeling constraints on the frames involve
solely orthogonal transformations, it is therefore advisable to
normalize and orthogonalize the frames.

5) Estimation from an initial guess solution: Local trans-
formations may be estimated from a naive solution of the
deformation (computed without transforming the differential
representation). This approach is akin to the multiresolution
techniques in the sense that the initial guess of the deformed
surface lacks details; the details are then transformed by the
estimated local transformations. The local transformations are
estimated from the initial guess by comparing k-ring vectors
Vi of the original surface with corresponding k-rings V′

k in
the deformed surface [41] (the columns of Vi are vectors from
the center vertex pi to its k-order neighbors, and in addition
the normal at pi), or alternatively from pairs of corresponding
triangles and their normals [14]. A least-squares fit of the local
transformation is

T̃i = V′
kV

+
k ,

where (·)+ denotes the pseudo-inverse of a matrix. The local
transformations are then orthogonalized to obtain rigid Ti’s
(isotropic scales may also be allowed, depending on the user’s
requirements). The assumption is that the deformed surface
is mostly smooth, and thus the naive solution provides a
good guess for the deformed underlying base surface and
only small-scale details need to be rotated to correct their
orientation. The larger k the smoother the estimation is,
naturally at larger computational cost. Note that this method
is sensitive to translations of the handle.

6) Implicit optimization: Implicit optimization of transforma-
tions tries to tackle the “chicken and egg” problem of local
transformations by expressing these unknown transformations
in terms of the unknown deformed geometry: Ti = Ti(p′).
The local transformations are then found together with the
deformed surface in the global optimization process (24).
Notice that the three spatial mesh coordinate functions are no
longer decoupled in the global optimization. The local trans-
formations should be also constrained to rigid or similarity
transformations only. The coefficients of Ti are functions of
p′; in the optimal case Ti would be constrained to rotations
alone, but this would require to use non-linear combinations of
p′, turning (24) into a global non-linear optimization. It is pos-
sible, however, to linearize the similarity transformations [60]:

Ti =

 s −h3 h2

h3 s −h1

−h2 h1 s

 . (27)

The parameters s,h are determined by writing down the
desired transformation constraints, i.e., Ti(pi−pj) = p′i−p′j
for each vj ∈ Nk (vi) and thus extracting s,h as linear com-
binations of p′. The precise derivation can be found in [40].
Plugging the linear expression for Ti back into (24) results
in a linear least-squares problem. It should be noted that the
expression for Ti accommodates isotropic scales in addition to
rotations, therefore when the handle is “pulled”, for example,
the deformed surface will scale and inflate. When this effect
is undesired, it can be eliminated by scaling the differential
representations (gradients/Laplacians) of the deformed surface
back to their length in the original surface and solving (11)
with this corrected representation. Another solution, proposed
in [33] is to scale the triangles of the deformed surface back to

11

(a) (b) (c)
Fig. 8. A 100k triangle version of the mesh (a) from [27] was bent to
compare the original Laplacian editing formulation LT Lp = LT δ (b), and
the correct one L2p = Lδ (c). Both (b) and (c) use the cotangent Laplacian.

their original size and re-stitching the mesh using the Poisson
setup (15). The implicit optimization of local transformations
is also sensitive to translational modeling constraints.

C. Related approaches
In this section we list and discuss several deformation

approaches that employ differential surface representations and
categorize them according to the particular representation and
local transformation handling.

The first use of differential coordinates for mesh editing
was sketched by Alexa in [2]; he suggested using the original
surface Laplacians with soft modeling constraints in (21).
Since no appropriate local transformations were computed,
this approach was suitable for editing smooth surfaces with
no features or for performing deformations that almost do not
involve rotations.

In 2004, Lipman et al. [41] proposed to add local rotation
estimation to the simple Laplacian editing paradigm, com-
puting it from the naive solution of [2]. They have shown
that smoothing the estimated transformations by using larger
neighborhoods with special weighted averaging may signifi-
cantly improve the results, although at larger computational
cost. Still, note that this two-step deformation process only
requires two solves by back-substitution (plus intermediate
transformation computations), since the system matrix (21)
remains the same and can be pre-factored. The approach works
well for relatively smooth surfaces with no largely protruding
features; otherwise the underlying assumption that the initial
guess by naive Laplacian editing provides a good rotation
guess no longer holds, and the rotation estimation fails. In
particular, the approach may have difficulty with features that
cannot be described as a height field over the base smooth
surface.

Botsch et al. [14] proposed a conceptually similar technique:
they estimate the local rotations from a base surface B and its
deformed version B′ (see Fig. 3 and Section V-E); they then
apply these rotations to the gradients of the input mesh to
reconstruct the final result using the Poisson framework (15).

Sorkine et al. [60] proposed to use the Laplacian repre-
sentation coupled with implicit transformation optimization,
derived from one-rings. To eliminate isotropic scaling, they
rescale the Laplacians of the deformed surface back to their
original length and solve (21). This technique can handle
more complex surfaces with large features; it is limited,

however, in the allowed rotation range, because the linearized
approximation of local rotations is only valid for small angles.
In practice, rotations of up to π/2 can be well-performed [57];
for larger rotations several steps of the technique should be
applied to break the large rotation into smaller ones.

The method of Sorkine et al. [60] was applied to manipu-
lation of triangulated 2D shapes by Igarashi et al. [33]. They
used implicit transformation optimization; note that in 2D sim-
ilarity transformations can be exactly linearly parameterized:

S =
(

a b
−b a

)
.

In a second step, Igarashi et al. remove the unwanted uniform
scaling from the local transformations and re-solve for the ver-
tex positions using edge equations, as in (23). The technique is
very effective for 2D shape editing, thanks to the exact rotation
formulation and the meshing of the interior of the shape.

The idea of combining the Laplacian representation with
implicit transformation optimization was further developed by
Fu et al. [23]. They propose a hybrid approach that combines
implicit optimization with two-step local transformation esti-
mation. In the first stage, Laplacian editing is performed with
implicit transformations, that are not constrained to linearized
similarity transformed but instead are allowed to be any affine
transformations Ti = U′

iU
+
i , where Ui are the one-ring

vectors of vertex vi. In addition, the local transformations are
asked to be locally smooth, which is expressed by additional
quadratic terms in the deformation energy: ‖Ti −Tj‖2 for
neighboring vertices vi, vj . The resulting deformed surface
is then used as an initial guess to estimate the actual local
transformations; those are orthogonalized and Laplacian edit-
ing (21) is applied. This approach enables larger rotations
than [60], but it requires tweaking the relative weighting of
local transformation smoothness terms; moreover the formu-
lation of implicit transformations may be ill-defined for flat
one-rings, in which case a perturbation is required.

It is worth noting that the above approaches used a slightly
erroneous version of the discrete energy (20) since they omit-
ted the area weights Ai, which correspond to discretization of
the L2 product on the mesh [67]. This lead to normal equations
of the form

LT Lp′ = LT δ,

which differ from the correctly discretized (21). Such formu-
lation may lead to problems on irregular meshes, as demon-
strated in Fig. 8.

Laplacian editing was further used for a sketch-based edit-
ing system [49] and volume graph deformations [73]. Nealen
at al. [49] employed implicit transformation propagation and
proposed using sketched curves on the surface as handles and
deformation constraints, which leads to an intuitive silhouette
and feature editing tool. In the classical handle metaphor the
position of the handle is directly manipulated by the user and
thus hard positional constraints are preferred; in a sketch-based
system soft constraints are actually advantageous, since they
allow the user to place imprecise strokes that are only meant
to hint at the desired shape but not specify it exactly. Thus,
Nealen et al. allowed varying the weight on the sketched po-
sitional constraints to achieve rough sketching (small weights)

12

sketch constraint λ = 0.2 λ = 0.001

Fig. 9. Varying the weighting of soft positional constraints may be beneficial,
e.g., in a sketch-based interface [49]. Here, the handle is the silhouette curve,
and the positional constraints are sketched in green. A small relative weight
λ leads to a rough approximation of the sketch, preserving the surface details
along the silhouette, while a larger weight makes the system follow the
sketched curve more precisely.

or carefully drawn sketching (high weights); see an example
in Fig. 9. Zhou et al. [73] proposed similar skeleton-curve
deformation constraints for character animation, combined
with Laplacian editing of a volumetric graph (they used a
variant of geodesic transformation propagation). They augment
the surface mesh with an inner grid of vertices (which should
be coarser than the surface mesh for complexity reasons).
Performing Laplacian editing on such volumetric graph creates
connections between distant points on the surface and thus
tends to better preserve the volume of the shape.

Yu et al. [71] proposed the gradient-based representation
for mesh editing, combined with geodesic propagation of local
transformations. Zayer et al. [72] replaced the geodesic prop-
agation by harmonic interpolation and showed that this leads
to smoother distributed local transformations and thus better
results. Popa et al. [52] generalized the harmonic propagation
to material-dependent transformation assignment. In contrast
to previously cited techniques, all these methods only work
when an appropriate handle transformation is specified in
addition to translation (they are translation-insensitive). It is
worth noting that deformation gradients, closely related to
the gradient-based representation, were used for deformation
transfer of one deforming mesh sequence onto another by
Sumner et al. [61].

Lipman et al. [42] developed the frame-based representation
and used it for surface editing and interpolation. This tech-
nique employs a rigid-invariant representation, where the local
transformations are found explicitly by optimization (22). The
deformation constraints may include very large rotations (up
to π) and the details remain preserved; the limitation, however,
is again translation-insensitivity, since solving for the frames
is decoupled from the positional constraints, thus an explicit
rotational constraints for handle frames must be specified.

Note that all the differential deformation approaches require
solving global linear sparse systems involving symmetric
positive definite matrices, and thus can benefit from fast
Cholesky factorization in a preprocess and interactive back-
substitution, as described in Section II-C. Yet it is worth noting
that recently, Shi et al. [54] developed a multiresolution solver
specifically tailored for solving Poisson systems, which may
be useful in scenarios where the ROI changes frequently,
or the Cholesky factor is too large to fit into memory.
They also proposed a modification of the frame-based editing
approach of Lipman et al. [42] to demonstrate the abilities

of their solver: instead of solving (22), the frames of the
deformed surface are computed by harmonic interpolation of
the handle transformation, while the geometry reconstruction
step (23) remains the same. It can be shown that when all
handle constraints involve rotations about the same axis, this
framework produces optimal results in terms of curvature
preservation [39].

IV. COMPARISON & DISCUSSION

In this section we compare the different mesh editing
techniques described in Section II and Section III. Since it
is hard to evaluate and compare the techniques solely based
on the (differing) examples given in the original papers, we
perform exactly the same deformations using a representative
subset of the described techniques. Notice that our goal is not
to show the best-possible results each method can produce,
since these images can be found in the original publications.
Instead, we rather want to show under which circumstances
each individual method fails. Hence, in Fig. 10 we picked
extreme deformations that identify the respective limitations of
the different techniques. For comparison we show the results
of the non-linear surface deformation PriMo [12], which does
not suffer from linearization artifacts.

The first technique we examine is the variational bending-
energy minimization [10] in combination with the multires-
olution technique based on deformation transfer [14]. This
approach works fine for pure translations, i.e., it yields a
smooth deformation and locally rotates the geometric details.
However, due to the linearization from (1) to (2) this method
has problems with large rotations, which can be seen in the
bend and twist examples. Notice that for these two examples
anisotropic deformations were used: After a principal com-
ponent analysis the model is anisotropically scaled along its
principal axes to have uniform variation, and the cotangent
weights (7) are derived from the scaled coordinates, similar
to [10]. The cactus model is difficult because of its strongly
protruding arms. The default base surface B, as computed by
minimizing curvature energy, has degenerate triangles in these
regions, such that no multiresolution hierarchy was used for
this example.

The gradient-based Poisson editing [71], [72] updates the
surface gradients using the gradient of the deformation, i.e., its
rotation and scale/shear components. Consequently, the tech-
nique works very well for rotations. However, as mentioned
in Section III-B, the explicit propagation of local rotations is
translation-insensitive, such that the plane example is neither
smooth nor detail preserving.

In contrast, the Laplacian surface editing [60] implicitly
determines the per-vertex rotations, and hence works similarly
well for translations and rotations. Its main drawback is the
required linearization of rotations, which yields artifacts for
large local rotations. Notice that although the original paper
employed the uniform Laplacian discretization, our examples
were done using the cotangent weights (see also Section V-A).

The rotation-invariant coordinates [42] solve a linear system
to preserve the relative orientation of the local frames, which
works very well for rotations and does not have problems

13

Approach Pure Translation 120◦ bend 135◦ twist 70◦ bend

Original model

Non-linear
prism-based

modeling [12]

Thin shells [10] +
deformation
transfer [14]

Gradient-based
editing [72]

Laplacian-based
editing with implicit

optimization [60]

Rotation invariant
coordinates [42]

Fig. 10. The extreme examples shown in this comparison matrix were particularly chosen to reveal the limitations of the respective deformation approaches.
The respective strengths and weaknesses of the depicted techniques, as well as the reasons of the artifacts, are discussed in Section IV.

14

with protruding features like in the cactus example. However,
since this linear system does not consider positional con-
straints, this method is also translation insensitive. In addition,
the linear system for reconstructing the positions from local
frames corresponds to a uniform Laplacian, which causes the
asymmetries for the regular tessellation of the bumpy plane.

From those examples one can derive the following guide-
lines for picking the “right” deformation technique for a
specific application scenario:

In technical, CAD-like engineering applications the required
shape deformations are typically rather small, since in many
cases an existing prototype only has to be adjusted slightly,
but they have high requirements on surface fairness, boundary
continuity, and the precise control thereof. For such kind of
problems a linearized shell model like [10] was shown to be
well suited.

In contrast, applications like character animation mostly
involve (possibly large) rotations of limps around bends and
joints. Here, methods based on differential coordinates clearly
are the better choice. Moreover, the required rotations might
be available from, e.g., a sketching interface [49], [73] or a
motion capture system [54].

Applications that require both large-scale translation and
rotations are problematic for all linear approaches. In this case
one can either employ are more complex non-linear technique,
or split up large deformations into a sequence of smaller
ones. While the non-linear techniques are computationally and
implementation-wise more involved, splitting up deformations
or providing a denser set of constraints complicates the user
interaction. With the rapidly increasing computational power
of today’s computers, non-linear methods become more and
more tractable, which already lead to a first set of non-linear,
yet interactive, mesh deformation approaches [4], [12], [31],
[36], [53], [62], [66].

V. DEFORMATION FAQ
After describing, comparing, and discussing the various

shape editing techniques of Sections II and III, we finally
want to answer a set of questions most frequently asked in
the context of mesh-based surface deformations.

A. “What is the influence of the Laplacian discretization?”
Most of the approaches described in Section II and Sec-

tion III derive the deformed surface by solving a Laplacian
or bi-Laplacian linear system. Hence, they all require a dis-
cretization of the Laplacian operator, and their results strongly
depend on this choice. There exist several variations of the
weights used in the typically employed Laplacian discretiza-
tion (6). The uniform Laplacian, employed for instance in [34],
[41], [60], [63], uses the weights

wij = 1 , wi =
1∑
j wij

.

Since this discretization takes neither edge lengths nor angles
into account, it cannot provide a good approximation for
irregular meshes. Better results can be achieved by

wij =
1
2

(cot αij + cot βij) , wi = 1,

which now considers angles, but not varying vertex densities
[69], [71]. The best results are obtained by including the per-
vertex normalization weights (see Section II-B)

wij =
1
2

(cot αij + cot βij) , wi =
1
Ai

,

as proposed by [18], [45], [51] and employed for instance in
[10], [11]. A qualitative comparison of the three discretizations
is given in Fig. 11; in this example curvature energies are
minimized by solving ∆2

Sp = 0, since smooth surfaces are
visually easier to evaluate than smooth deformations. A more
detailed analysis of different discretizations, with a focus on
their convergence properties, can be found in [27], [70].

While the cotangent discretization clearly gives the best
results, it can also lead to numerical problems in the presence
of near-degenerate triangles, since then the cotangent values
degenerate and the resulting matrices become singular. In this
case the degenerate triangles would have to be eliminated [8]
in a preprocess. Alternatively, the whole base surface B could
be re-meshed isotropically, as proposed in [11].

B. “What is the difference between the thin-plate energy∫
κ2

1 + κ2
2 and the mean curvature energy

∫
H2?”

With the mean curvature H = κ1 + κ2 and Gaussian
curvature K = κ1κ2, we have∫

S
H2 dA =

∫
S

(
κ2

1 + κ2
2

)
dA + 2

∫
S

K dA,

i.e., the two energies basically differ in the integral
∫

K,
which by the Gauss-Bonnet theorem only depends on the
(fixed) Dirichlet boundary constraints on ∂Ω and therefore
stays constant [19]. Hence, the minimizers of the two energies
are equivalent for identical Dirichlet boundary constraints.
This also holds for the linearized energies, which are∫
S

κ2
1 + κ2

2 dA ≈
∫
S
‖puu‖

2 + 2 ‖puv‖
2 + ‖pvv‖

2 dudv∫
S

H2 dA ≈
∫
S
‖puu‖

2 + 2pT
uupvv + ‖pvv‖

2 dudv.

Variational calculus yields the identical Euler-Lagrange equa-
tion ∆2p = 0 for both linearized energies, and its discretiza-
tion (and symmetrization) leads to LsM−1Lsp = 0 to be
solved for its minimizer surface (see Section II-C). Even
when discretizing the mean curvature energy instead of the
above Euler-Lagrange equations one arrives at the same linear
system [67].

C. “What is the difference between hard constraints and soft
least-squares constraints?”

As introduced in Section II, the first n′ vertices (v1, . . . , vn′)
are considered free, and the last k = n − n′ vertices
(vn′+1, . . . , vn) are constrained by prescribing positions ci or
displacements di = ci − pi.

15

(a) (b) (c) (d)
Fig. 11. Different Laplace-Beltrami discretizations are evaluated by minimizing the thin-plate energy of the irregular mesh (a) by solving the Euler-Lagrange
equation ∆2

Sp = 0. Both the uniform Laplacian (b) and the cotangent Laplacian without the area term (c) yield artifacts in regions of high vertex density.
The cotangent discretization including the per-vertex normalization clearly gives the best results (d). The small images shows the respective mean curvatures.

Most mesh editing approaches consider those constraints as
hard constraints. For instance, solving a bi-Laplacian system
as described in Section II gives the initial linear system

(
L2

0 Ik

) d1

...
dn

 =

0
...
0

cn′+1 − pn′+1

...
cn − pn

 ,

with L2 ∈ IRn×n and Ik is the k × k identity matrix.
Eliminating rows and columns corresponding to the constraint
vertices by bringing them to the right-hand side then yields
the upper left n′ × n′ sub-matrix as the linear system to be
solved for the displacements d1, . . . ,dn′ .

In contrast, the Laplacian editing papers [41], [49], [60]
handle constraints as soft constraints by adding them to the
energy in the form

E (p′) =
n∑

i=1

∥∥∆S (p′i)− δ′i
∥∥2 + λ ·

n∑
j=n′+1

∥∥p′j − cj

∥∥2
.

The minimum of this energy can be found by solving the
overdetermined (n + k)× n system

(
L

0 λIk

) p′
1

...
p′

n

 =

δ′
1

...
δ′

n

λcn′+1

...
λcn

in the least squares sense. This requires solving the normal
equations, which leads to the n× n system

»
LT L +

„
0 0
0 λ2Ik

«– 0B@ p1
...

pn

1CA = LT

0B@ δ′1
...

δ′n

1CA +

0BBBBBBBB@

0
...
0

λ2cn′+1

...
λ2cn

1CCCCCCCCA
.

In order to get (close to) interpolation of the constraints
ci one has to choose a sufficiently large weight λ, which
unfortunately depends on the geometric position of the ci as

well as on the relative number of constraints k/n. Moreover,
since the condition number of the above matrix grows linearly
with λ, a higher weight can cause numerical problems.

However, with growing λ the solution of the above system
approaches the solution of the n′ × n′ system

LT L

 p1
...

pn′

 = LT

 δ′1
...

δ′n′

with hard constraints. Since its condition number is much
better, it is therefore advisable to solve the latter system instead
when exact interpolation of the constraints is required. See the
effect of varying λ in Fig. 9.

D. “What is the relation of the bending energy minimization
and the Laplacian-based differential deformation?”

In the following we focus on the surface deformation, and
neglect detail preservation techniques, such as multiresolution
decomposition in Section II and rotations of Laplacians in
Section III. As described in Section II, the variational mini-
mization of the bending energy∫

Ω

‖duu‖2 + 2 ‖duv‖2 + ‖dvv‖2 dudv

leads to the Euler-Lagrange equation

∆2d = 0 .

Similarly, the Laplacian editing energy∫
Ω

‖∆p′ − δ‖2 dudv

introduced in Section III yields the equations

∆2p′ = ∆δ .

From p′ = p + d and δ = ∆p we can immediately see
that the two Euler-Lagrange equations are equivalent, as are
their corresponding linear systems L2d = 0 and L2p′ =
Lδ. Notice that this is not true for the original formulation
presented in [41], [60], since there the slightly incorrect system
LT Lp′ = LT δ was solved (see Section III-C).

The basic variational bending energy minimization and
Laplacian-based surface deformation can therefore be consid-
ered equivalent. They differ in the way they are extended to

16

preserve fine-scale details, i.e., finding local rotations of the
geometric details. While all multiresolution approaches derive
those rotations from the deformation of the low-frequency base
surface (Section II-D), there are several approaches to rotate
the differential coordinates (Section III-B).

E. “What is the relation of gradient-based deformation and
deformation transfer?”

In [61] Sumner and Popović transfer the deformation S 7→
S ′, for a given source mesh S and its deformed version S ′,
onto a target mesh T , which yields a deformed mesh T ′ such
that the two deformations S 7→ S ′ and T 7→ T ′ are as similar
as possible.

They add to each triangle ti a fourth point, turning the
triangle into a tetrahedron, such that these four points in S
and S ′ uniquely determine the affine transformation x 7→
Six+ti. They then consider the gradient of this affine mapping
(so-called deformation gradient), which is the 3 × 3 matrix
Si containing the rotation and scale/shear part. Finally, new
vertex positions p′i ∈ T ′ are found such that the resulting
deformation gradients Ti for T are close to the given Si,
which leads to the area-weighted least squares system

G̃
T
MG̃

 p′1
T

...
p′ñ

T

 = G̃
T
M

 ST
1
...

ST
m

 ,

where ñ = n + m ≈ 3n is the number of vertices including
the additional fourth points, and G̃ is the 3m× ñ matrix that
computes the deformation gradients from the vertex positions.

In this context, the gradient-based deformation [71] is
similar, but here the user directly prescribes the local rotations
Si, which are then applied to the gradients Gi ∈ IR3×3 of the
original mesh T , resulting in G′

i. In order to find the mesh
T ′ that has the desired gradients G′

i the Poisson system

GT MG

 p′1
T

...
p′n

T

 = GT M

 G′
1

...
G′

m

is solved, as described in Section III.

It was shown in [14] that one can safely remove the fourth
points from the first system, which reduces the size of the
system from ñ× ñ to n×n. After that reduction the matrices
G and G̃ — and hence the whole linear systems — can be
shown to be equal. Hence, deformation transfer can also be
considered as a special case of Poisson editing, where the local
per-triangle transformations are determined from S and S ′.

VI. CONCLUSIONS

In this survey we attempted to give a systematic description
and classification of the plethora of surface editing methods
that can be generally seen as linear variational techniques. Our
goal was to first of all explain the original motivation behind
these techniques, that comes from continuous formulations and
is closely related to physically-based energies and classical
differential geometry. Then we showed how the different meth-
ods simplify and discretize these settings in order to achieve

interactive and robust mesh deformation methods. Finally,
we performed practical comparison of several representative
methods to reveal the characteristic strengths an weaknesses
of each approach in extreme deformation cases. We hope that
our qualitative description and practical illustrations will help
the readers to understand the ideas behind these methods and
also to choose the right method for each particular editing
scenario.

We focused on linear variational methods, since they com-
prise a large body of work over the recent years, yet they
have not been surveyed in an elaborated and comparative
manner. In addition, this group of methods has gained high
visibility in computer graphics research, as is evident by the
number of citations. This popularity is owed to the robustness
and ease of implementation of these approaches, especially
thanks to the availability of advanced sparse linear solvers.
One obvious conclusion of this survey, however, is that there
is no perfect technique that would work satisfactory in every
case. Apart from the fact that a “perfect” result may be a
subjective and application-dependent notion, all the reviewed
methods share the same property: for the sake of speed and
robustness they linearize the inherently non-linear deformation
problem. The various machinery that is meant to mask the
linearization errors works in some scenarios, but fails in
others, as we demonstrated. As computing resources become
faster and faster, and previously infeasible numerical methods
become tractable, there is now room for non-linear methods
and optimizations to be explored in interactive applications.

In light of the above, we felt that this is an appropriate
point in time to summarize the linear variational deformation
methods. We are confident that these techniques are yet
to conquer the commercial modeling applications, and that
research-wise there are yet many areas where they can be
incorporated and explored further. Moreover, we anticipate
further development of non-linear deformation techniques,
exploiting the knowledge and experience gained from the
linear methods. After all, each general problem is solved by
iterating and refining linear approximations.

ACKNOWLEDGMENTS

We wish to thank Leif Kobbelt and Daniel Cohen-Or for
encouraging us to prepare this survey and for co-authoring
numerous papers recited here. We are also grateful to them,
and Marc Alexa, Markus Gross, Denis Zorin, Max Wardetzky,
Klaus Hildebrandt for the various discussions that helped
to improve this manuscript. We also thank the anonymous
reviewers for their valuable comments and suggestions. The
results in Fig. 7 are courtesy of Tiberiu Popa and Alla Sheffer.

REFERENCES

[1] Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder. Multilevel
solvers for unstructured surface meshes. SISC, 26(4):1146–1165, 2005.

[2] Marc Alexa. Local control for mesh morphing. In Proceedings of Shape
Modeling International, pages 209–215. IEEE Computer Society Press,
2001.

[3] Marc Alexa. Differential coordinates for local mesh morphing and
deformation. The Visual Computer, 19(2):105–114, 2003.

[4] Oscar Kin-Chung Au, Chiew-Lan Tai, Ligang Liu, and Hongbo Fu. Dual
Laplacian editing for meshes. IEEE Transactions on Visualization and
Computer Graphics, 12(3):386–395, 2006.

17

[5] Klaus-Jürgen Bathe. Finite Element Procedures. Prentice Hall, 1995.
[6] Dominique Bechmann. Space deformation models survey. Computers

& Graphics, 18(4):571–586, 1994.
[7] Mario Botsch, David Bommes, and Leif Kobbelt. Efficient linear system

solvers for mesh processing. IMA Mathematics of Surfaces XI, Lecture
Notes in Computer Science, 3604:62–83, 2005.

[8] Mario Botsch and Leif Kobbelt. A robust procedure to eliminate
degenerate faces from triangle meshes. In Proceedings of Vision,
Modeling, and Visualization, pages 402–410, 2001.

[9] Mario Botsch and Leif Kobbelt. Multiresolution surface representation
based on displacement volumes. Computer Graphics Forum (Proceed-
ings of Eurographics), 22(3):483–491, 2003.

[10] Mario Botsch and Leif Kobbelt. An intuitive framework for real-time
freeform modeling. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH), 23(3):630–634, 2004.

[11] Mario Botsch and Leif Kobbelt. A remeshing approach to multireso-
lution modeling. In Proceedings of the Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing, pages 189–196. ACM Press, 2004.

[12] Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt. PriMo:
Coupled prisms for intuitive surface modeling. In Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, pages 11–20, 2006.

[13] Mario Botsch, Mark Pauly, Christian Rössl, Stephan Bischoff, and Leif
Kobbelt. Geometric modeling based on triangle meshes. In Eurographics
2006 Course Notes, 2006.

[14] Mario Botsch, Robert Sumner, Mark Pauly, and Markus Gross. Defor-
mation transfer for detail-preserving surface editing. In Proceedings of
Vision, Modeling, and Visualization (VMV), pages 357–364, 2006.

[15] George Celniker and Dave Gossard. Deformable curve and surface
finite-elements for free-form shape design. In Proceedings of ACM
SIGGRAPH, pages 257–266. ACM Press, 1991.

[16] Fehmi Cirak, Michael Ortiz, and Peter Schröder. Subdivision surfaces:
A new paradigm for thin-shell finite-element analysis. International
Journal for Numerical Methods in Engineering, 47(12):2039–2072,
2000.

[17] Fehmi Cirak, Michael Scott, Peter Schröder, Michael Ortiz, and Erik
Antonsson. Integrated modeling, finite-element analysis, and design for
thin-shell structures using subdivision. CAD, 34(2):137–148, 2002.

[18] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr.
Implicit fairing of irregular meshes using diffusion and curvature flow. In
Proceedings of ACM SIGGRAPH, pages 317–324. ACM Press/Addison-
Wesley Publishing Co., 1999.

[19] Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, 1976.

[20] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution analysis of arbitrary
meshes. In Proceedings of ACM SIGGRAPH, pages 173–182. ACM
Press, 1995.

[21] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain
high dynamic range compression. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH), 21(3):249–256, 2002.

[22] David Forsey and Richard Bartels. Hierarchical B-spline refinement. In
Proceedings of ACM SIGGRAPH, pages 205–212. ACM Press, 1988.

[23] Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. Effective
derivation of similarity transformations for implicit Laplacian mesh
editing. Computer Graphics Forum, 2007. To appear.

[24] Michael Garland. Multiresolution modeling: Survey & future opportu-
nities. In Eurographics State of the Art Report, 1999.

[25] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, 3rd edition, 1996.

[26] Günther Greiner and Joachim Loos. Data dependent thin plate energy
and its use in interactive surface modeling. Computer Graphics Forum
(Proceedings of Eurographics), 15(3):175–185, 1996.

[27] Eitan Grinspun, Yotam Gingold, Jason Reisman, and Denis Zorin.
Computing discrete shape operators on general meshes. Computer
Graphics Forum (Proceedings of Eurographics), 25(3):547–556, 2006.

[28] Heinrich W. Guggenheimer. Differential Geometry. McGraw–Hill, New
York, 1963.

[29] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal
processing for meshes. In Proceedings of ACM SIGGRAPH, pages 325–
334. ACM Press, 1999.

[30] Igor Guskov, Kiril Vidimc̆e, Wim Sweldens, and Peter Schröder. Normal
meshes. In Proceedings of ACM SIGGRAPH, pages 95–102, 2000.

[31] Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shanghua
Teng, Hujun Bao, Baining Guo, and Heung-Yeung Shum. Subspace
gradient domain mesh deformation. ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH), 25(3):1126–1134, 2006.

[32] Thomas J. R. Hughes. The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs,
1987.

[33] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-
possible shape manipulation. ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH), 24(3):1134–1141, 2005.

[34] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. In Proceedings
of ACM SIGGRAPH, pages 105–114. ACM Press, 1998.

[35] Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. Multiresolution
hierarchies on unstructured triangle meshes. Computational Geometry:
Theory and Applications, 14:5–24, 1999.

[36] Vladislav Kraevoy and Alla Sheffer. Mean-value geometry encoding.
International Journal of Shape Modeling, 12(1):29–46, 2006.

[37] Aaron Lee, Henry Moreton, and Hugues Hoppe. Displaced subdivision
surfaces. In Proceedings of ACM SIGGRAPH, pages 85–94. ACM Press,
2000.

[38] Seungyong Lee. Interactive multiresolution editing of arbitrary meshes.
Computer Graphics Forum (Proceedings of Eurographics), 18(3):73–82,
1999.

[39] Yaron Lipman, Daniel Cohen-Or, Ran Gal, and David Levin. Volume
and shape preservation via moving frame manipulation. ACM Transac-
tions on Graphics, 26(1), 2007.

[40] Yaron Lipman, Olga Sorkine, Marc Alexa, Daniel Cohen-Or, David
Levin, Christian Rössl, and Hans-Peter Seidel. Laplacian framework
for interactive mesh editing. International Journal of Shape Modeling,
11(1):43–62, 2005.

[41] Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian
Rössl, and Hans-Peter Seidel. Differential coordinates for interactive
mesh editing. In Proceedings of Shape Modeling International, pages
181–190. IEEE Computer Society Press, 2004.

[42] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or.
Linear rotation-invariant coordinates for meshes. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), 24(3):479–487, 2005.

[43] Martin Marinov, Mario Botsch, and Leif Kobbelt. GPU-based mul-
tiresolution deformation using approximate normal field reconstruction.
Journal of Graphics Tools, 2007.

[44] Martin Marinov and Leif Kobbelt. Automatic generation of structure
preserving multiresolution models. Computer Graphics Forum (Pro-
ceedings of Eurographics), 24(3):479–486, 2005.

[45] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr.
Discrete differential-geometry operators for triangulated 2-manifolds.
In Hans-Christian Hege and Konrad Polthier, editors, Visualization and
Mathematics III, pages 35–57. Springer-Verlag, Heidelberg, 2003.

[46] Tim Milliron, Robert J. Jensen, Ronen Barzel, and Adam Finkelstein.
A framework for geometric warps and deformations. ACM Transactions
on Graphics, 21(1):20–51, 2002.

[47] Henry P. Moreton and Carlo H. Séquin. Functional optimization for fair
surface design. In Proceedings of ACM SIGGRAPH, pages 167–176.
ACM Press, 1992.

[48] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman,
and Mark Carlson. Physically based deformable models in computer
graphics. Computer Graphics Forum, 25(4):809–836, 2006.

[49] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A
sketch-based interface for detail-preserving mesh editing. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH), 24(3):1142–1147,
2005.

[50] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image edit-
ing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH),
22(3):313–318, 2003.

[51] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal
surfaces and their conjugates. Experiment. Math., 2(1):15–36, 1993.

[52] Tiberiu Popa, Dan Julius, and Alla Sheffer. Material-aware mesh
deformations. In Proceedings of Shape Modelling International, pages
141–152. IEEE Computer Society, 2006.

[53] Alla Sheffer and Vladislav Kraevoy. Pyramid coordinates for morphing
and deformation. In Proceedings of the Second International Symposium
on 3DPVT (3D Data Processing, Visualization, and Transmission), pages
68–75. IEEE Computer Society Press, 2004.

[54] Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng. A fast multigrid
algorithm for mesh deformation. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH), 25(3):1108–1117, 2006.

[55] Ken Shoemake and Tom Duff. Matrix animation and polar decomposi-
tion. In Proceedings of Graphics Interface, pages 258–264, 1992.

[56] Olga Sorkine. Differential representations for mesh processing. Com-
puter Graphics Forum, 25(4):789–807, 2006.

18

[57] Olga Sorkine. Laplacian Mesh Processing. PhD thesis, School of
Computer Science, Tel Aviv University, 2006.

[58] Olga Sorkine and Daniel Cohen-Or. Least-squares meshes. In Proceed-
ings of Shape Modeling International, pages 191–199. IEEE Computer
Society Press, 2004.

[59] Olga Sorkine, Daniel Cohen-Or, and Sivan Toledo. High-pass quanti-
zation for mesh encoding. In Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, pages 42–51. Euro-
graphics Association, 2003.

[60] Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa, Christian
Rössl, and Hans-Peter Seidel. Laplacian surface editing. In Proceed-
ings of the Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing, pages 179–188. ACM Press, 2004.

[61] Robert W. Sumner and Jovan Popović. Deformation transfer for
triangle meshes. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH), 23(3):399–405, 2004.

[62] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan
Popović. Mesh-based inverse kinematics. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), 24(3):488–495, 2005.

[63] Gabriel Taubin. A signal processing approach to fair surface design. In
Proceedings of ACM SIGGRAPH, pages 351–358. ACM Press, 1995.

[64] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elas-
tically deformable models. In Proceedings of ACM SIGGRAPH, pages
205–214. ACM Press, 1987.

[65] Bernhard Thomaszewski, Markus Wacker, and Wolfgang Strasser. A
consistent bending model for cloth simulation with corotational subdi-
vision finite elements. In Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 107–116, 2006.

[66] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field
based shape deformations. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH), 25(3):1118–1125, 2006.

[67] Max Wardetzky, Miklós Bergou, David Harmon, Denis Zorin, and Eitan
Grinspun. Discrete quadratic curvature energies. CAGD, 2007. To appear
in the special issue on Discrete Differential Geometry.

[68] William Welch and Andrew Witkin. Variational surface modeling. In
Proceedings of ACM SIGGRAPH, pages 157–166, 1992.

[69] Dong Xu, Hongxin Zhang, Qing Wang, and Hujun Bao. Poisson shape
interpolation. In Proceedings of the ACM Symposium on Solid and
Physical Modeling, pages 267–274. ACM Press, 2005.

[70] Guoliang Xu. Discrete Laplace-Beltrami operators and their conver-
gence. Computer Aided Geometric Design, 21(8):767–784, 2004.

[71] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh
editing with Poisson-based gradient field manipulation. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH), 23(3):644–651,
2004.

[72] Rhaleb Zayer, Christian Rössl, Zachi Karni, and Hans-Peter Seidel.
Harmonic guidance for surface deformation. In Computer Graphics
Forum (Proceedings of Eurographics), pages 601–609, 2005.

[73] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining
Guo, and Heung-Yeung Shum. Large mesh deformation using the vol-
umetric graph Laplacian. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH), 24(3):496–503, 2005.

[74] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multiresolu-
tion mesh editing. In Proceedings of ACM SIGGRAPH, pages 259–268.
ACM Press/Addison-Wesley Publishing Co., 1997.

Mario Botsch is a post-doctoral research associate
and lecturer at the Computer Graphics Laboratory
of ETH Zurich. He received his MS in Mathematics
from the University of Erlangen, Germany, in 1999.
From 1999 to 2000 he worked as research associate
at the Max-Planck Institute for Computer Science
in Saarbrücken, Germany. From 2001 to 2005 he
worked as research associate and PhD candidate at
the RWTH Aachen University of Technology, from
where he received his PhD in 2005. His research
interests include geometry processing in general,

and mesh generation, mesh optimization, shape editing, and point-based
representations in particular.

Olga Sorkine is a postdoctoral researcher at the
Computer Graphics Group of Technische Universität
Berlin. She received the BSc degree in mathematics
and computer science from Tel Aviv University in
2000 and completed her PhD in computer science
in 2006, also at Tel Aviv University. Her research
interests are in computer graphics and include in-
teractive geometric modeling, shape approximation,
shape and image manipulation, computer animation
and expressive modeling techniques.

