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Abstract. This study introduces a student model and control algorithm, optimizing mathematics learning in chil-
dren. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition
aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model con-
sists of a dynamic Bayesian network which incorporates domain knowledge and enables the operation of an online
system of automatic control. The system identifies appropriate tasks and exercise interventions on the basis of esti-
mated levels of accumulated knowledge. Student actions areevaluated and monitored to extract statistical patterns
which are useful for predictive control. The training system is adaptive and personalizes the learning experience,
which improves both success and motivation. Comprehensivetesting of input data validates the quality of the
obtained results and confirms the advantage of the optimizedtraining. Pilot results of training effects are included
and discussed.

Keywords. learning, control theory, optimization, dynamic Bayesiannetwork, dyscalculia

INTRODUCTION

Arithmetic skills are important in modern society, as numerical cognition and calculations are om-
nipresent in everyday life. However, many children suffer from difficulties in learning mathematics.
Developmental dyscalculia (DD) is a specific learning disability affecting the acquisition of arithmetic
skills (von Aster and Shalev, 2007). Genetic, neurobiological, and epidemiological evidence indicates
that DD is a brain-based disorder, although poor teaching and environmental deprivation might also be
relevant (Shalev, 2004). Children with DD show a deficit in basic numerical skills such as number com-
parison (Butterworth, 2005a,b; Landerl et al., 2004; Rubinsten and Henik, 2005) and exhibit fundamental
problems in number processing (Cohen Kadosh et al., 2007; Kucian et al.,2006; Mussolin et al., 2010;
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Price et al., 2007). Furthermore, they tend to experience difficulties in acquiring arithmetic procedures
and show a deficit in fact retrieval (Geary et al., 1992; Ostad, 1997, 1999). DD has an estimated preva-
lence of 3-6% in English- and German-speaking countries (Badian, 1983; Lewis et al., 1994; Shalev and
von Aster, 2008).
The relatively high prevalence of DD suggests that it is important to investigate intervention approaches
to prevent or remediate learning difficulties in mathematics. The range of existing interventions includes
remedial programs for elementary school children (Dowker, 2001; Kaufmann et al., 2003; Kucian et al.,
2011; Lenhard et al., 2011; Wilson et al., 2006) as well as preventive programs for pre-school children
at risk of developing mathematical difficulties (Griffin et al., 1994; Van De Rijtand Van Luit, 1998;
Wright, 2003). However, only a few of these programs are computer-based (and have been scientifi-
cally evaluated). ‘Number Race’ (Wilson et al., 2006) focuses on the training of basic numerical skills,
while ‘Rescue Calcularis’ (Kucian et al., 2011) combines the training of basic-numerical abilities with
the training of arithmetic skills. ‘Elfe and Mathis’ (Lenhard et al., 2011) alignsthe training to the Ger-
man scholar curriculum. All of these approaches are carefully designedfor children with difficulties in
learning mathematics, however, they lack user adaptation.
Yet, adaptability is very important for children suffering from learning disabilities as these children are
highly heterogeneous and thus a high grade of individualization is necessary. Intelligent tutoring systems
can contribute to this need. Current systems use approaches such as knowledge tracing (Corbett and An-
derson, 1994), performance factors analysis (Pavlik et al., 2009a,b)and Bayesian networks (Mislevy
et al., 1999) to estimate, assess and predict the knowledge of the user. Inthe domain of mathemat-
ics, existing systems mainly focus on specific aspects of the domain (Koedinger et al., 1997; Mislevy
et al., 1999; Rau et al., 2009). Previous work exists not only for student models, but also for control
mechanisms. A plethora of advanced control approaches aimed at optimization of complex mechanisms
was proposed (Garcia et al., 1989). Controllers can be based upon explicit models obtained through
intervention-driven identification (Busetto and Buhmann, 2009). Related predictive models aimed at
treating learning disabilities have been introduced for spelling learning (Baschera et al., 2011; Baschera
and Gross, 2010).
The present study is based on the intelligent tutoring system ’Calcularis’ (Käser et al., 2012). In this sys-
tem, we model the cognitive processes of mathematical development using a dynamic Bayesian network.
Our student model represents different mathematical skills and their dependencies. An automatic control
mechanism aimed at optimizing learning and acting on the skill net is introduced. The design of the skill
net allows for a non-linear control mechanism. In contrast to previous approaches, we allow movements
along all edges of the skill net (particularly also backward movements), which enables us to implicitly
model forgetting and knowledge gaps. The model’s predictive control enables a significant level of cog-
nitive stimulation which is user- and context-adaptive. We assess the efficiency and adaptability of the
introduced student model and control mechanism based on input logs from two user studies in Germany
and Switzerland. Furthermore, we analyse properties of users and skillsused in the model. Finally, we
also include first pilot results of the obtained training effects.
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TRAINING ENVIRONMENT

Current neuropsychological models postulate the existence of task-specific representational modules lo-
cated in different areas of the brain. The functions of these modules arerelevant to both adult cognitive
number processing and calculation (Dehaene, 2011). Dehaene’s triple-code model (Dehaene, 1995)
presumes three representational modules (verbal, symbolic, and analogue magnitude) related to num-
ber processing. These modules develop hierarchically over time (von Aster and Shalev, 2007) and the
overlap of the number representations increases with growing mathematical understanding (Kucian and
Kaufmann, 2009). The development of numerical abilities follows a subject-dependent speed which is
influenced by the development of other cognitive as well as domain general abilities and biographical
aspects (von Aster and Shalev, 2007). Hence, when teaching mathematics, a substantial degree of indi-
vidualization may not only be beneficial, but even necessary. The introduced computer-based training
addresses these challenges by

1. structuring the curriculum on the basis of the natural development of mathematical understanding
(hierarchical development of number processing).

2. introducing a highly specific design for numerical stimuli enhancing the different representations
and facilitating understanding. The different number representations and their interrelationships
form the basis of number understanding and are often perturbed in dyscalculic children (von Aster
and Shalev, 2007).

3. training operations and procedures with numbers. Dyscalculic childrentend to have difficulties
in acquiring simple arithmetic procedures and show a deficit in fact retrieval(Geary et al., 1992;
Ostad, 1997, 1999).

4. providing a fully adaptive learning environment. Student model and controlling algorithm optimize
the learning process by providing an ideal level of cognitive stimulation.

The training program is composed of multiple games in a hierarchical structure. Games are structured
according to number ranges and further grouped into two areas. The first area (Part A) focuses on “num-
ber representations and understanding”. It trains the transcoding between alternative representations and
introduces the three principles of number understanding: cardinality, ordinality, and relativity. Games
in this area are structured according to current neuropsychological models (von Aster and Shalev, 2007;
Dehaene, 1995). The first area is exemplified by the LANDING game (Fig. 1(a)). In this game, children
need to indicate the position of a given number on a number line. To do so, a falling cone has to be
steered using a joystick. The second area (Part B) is that of “cognitive operations and procedures with
numbers”, which aims at training concepts and automation of arithmetical operations. This is illustrated
by the PLUS-M INUS game (Fig. 1(b)). Children solve addition and subtraction tasks using blocks of
tens and ones to model them. The different games are categorized according to their complexity and
relative importance. Main games require a combination of abilities to solve them, while support games
train specific skills and serve as basic prerequisites. Difficulty estimation andhierarchy result from the
development of mathematical abilities.
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(a) LANDING game. (b) PLUS-M INUS game.

Fig.1. In the LANDING game, the position of the displayed number (29) needs to be indicated on the number line.
In the PLUS-M INUS game, the task displayed needs to be modelled with the blocksof tens and ones.

SELECTION OF ACTIONS

A fundamental component of the intelligent tutoring system is its pedagogical module: the subsystem
making the teaching decisions. It selects the skills for training and determines the actions for the se-
lected skill. To adaptively assess user inputs and dynamically optimize decisions, the system consists of
mechanisms of model predictive control (Garcia et al., 1989). The state ofthe learner is estimated by the
system and thus identified according to its internal representation: the student model. An attached bug
library enables recognition of error patterns.

Student model

The mathematical knowledge of the learner is modelled using a dynamic Bayesiannetwork (Friedman
et al., 1998). The network consists of a directed acyclic graphical modelrepresenting different mathe-
matical skills and their dependencies. Two skillssA andsB have a (directed) connection if mastering
skill sA is a prerequisite for skillsB. The belief of a skillsAi (probability that the skill is in the learnt
state) is conditioned over its parentsπi (see Charniak (1991) for an introduction to Bayesian networks):

p(sA1, ..., sAn) =
∏

i

psAi
where psAi

:= p(sAi|πi) (1)

As the skills cannot be directly observed, the system infers them by posingtasks and evaluating user ac-
tions. Such observations (E) indicate the presence of a skill probabilistically. The posteriorspsAi|Ek

of
the net are updated after each solved taskk using the sum-product algorithm (libDAI (Mooij, 2010)). We
initalize all probabilities to 0.5 as we do not have any knowledge about the mathematical proficiency of a
learner at the beginning of the training (the students are of different ageand have different mathematical
skill levels). This initalization is in accordance with the principle of maximum entropy. The dynamic
Bayesian net has a memory of5, i.e. posteriors are calculated over the last five time steps.

The skill net representation is ideal for modelling mathematical knowledge as the learning domain ex-
hibits a distinctively hierarchical structure. The structure of the net was designed using experts’ advice
and incorporates domain knowledge. The design of the net was inspired by work from Falmagne et al.
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(1990). Like in knowledge space theory, we order skills hierarchically and assume that some skills can
be surmised by others. If a child for example can compute additions involving aten crossing, we assume
that the child also knows addition without ten crossing. The basic assumption isthat to know skillsA,
the child needs to know all the precursor skills ofsA. However, in our case, each skill is assigned to
exactly one task. Our work can also be related to partial order knowledgestructures (Desmarais et al.,
1995) which also model dependencies between skills as conditional probabilities. Our resulting student
model contains 100 different skills as illustrated in Fig. 2. Table 1 explains thedifferent skills of the skill
net and their notation used in Fig. 2.
The skills inPart A are ordered and colour-coded according to the different number ranges 0-10, 0-100,
and 0-1000. Within each number range, the hierarchy follows the four-step developmental model (von
Aster and Shalev, 2007): The linguistic symbolization (step 2), arabic symbolization (step 3), and ana-
logue magnitude representation (step 4) develop based on a (probably) inherited representation of car-
dinal magnitude of numbers (step 1). Following this model, the transcoding between the linguistic and
arabic symbolization (Verbal→Arabic) is trained before giving the position of a written number on a
number line (Arabic→Numberline).
Skills in Part B can also be divided into the number ranges 0-10, 0-100 and 0-1000 (colour-coded in
Fig. 2). Furthermore, they are ordered according to their difficulties. The difficulty of a task depends not
only on the magnitude of the numbers included in the task and the complexity of the task, but also on
the representation of the task and the means allowed to solve it. A task such as ‘65+22=87’ (Addition
2,2) is considered more difficult than computing ‘13+5=18’ (Addition 2,1). On the other hand, modelling
‘65+22=87’ with one, ten and hundred blocks (Support Addition 2,2) is easier than calculating it men-
tally. And finally, tasks including ten (or hundred) crossings such as ‘65+27=92’ (Addition 2,2 TC) are
more complex to solve than tasks without crossings.
In general, each skill of the hierarchical network is associated with a task, i.e., there exists a game type
for each skill in the network. The PLUS-M INUS game (Sec.Training Effects) is for example associated
with all addition and subtraction skills allowing the use of material (for exampleSupport Addition 2,2).
On the other hand, the LANDING game (Sec.Training Effects) is assigned to all skills involving the
positioning of a number on a number line (for exampleArabic→Numberline).

Controller

The selection of actions is rule-based and non-linear. Rather than following a specified sequence to
the goal, learning paths are adapted individually. Therefore, each childtrains different skills and hence
plays different games during training (Fig. 4). This increases the set ofpossible actions (due to multiple
precursors and successors). After each solved task, the controllerselects one of the following options
based on the current state:

1. Stay: Continue the training of the current skill;

2. Go back: Train a precursor skill;

3. Go forward : Train a successor skill;
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Table 1
Explanation of skills and notations used in the skill net.

Area Notation Definition

Part A

Number
Representations

Concrete Number represented as a set of objects.

Verbal Spoken number.

Arabic Written number.

Numberline Number represented as a position on a number line.

Transcoding r1→r2 Translation of number from number representation r1 to r2.

Ordinality

Ordinal 1 Predecessor and successor of a number need to be given.

Relative
Calculate indirect (+/-2, +/-3) predecessors and successors of a given
number.

Ordinal 2 Judge, if the given numbers are sorted in ascending order.

Ordinal 3 Guess a secret number.

Other

Subitizing Simultaneous perception of numbers from 1-4.

Estimation Which of three displayed point sets corresponds to the given number?

Counting Forwards (and backwards) counting in the according numberrange.

Part B

Mental calculation

Addition a1,a2
Addition of two numbers. a1 and a2 denote the number of digits of the
addends. TC denotes a ten crossing and HC a hundred crossing.

Subtraction s1,s2
Subtraction of two numbers. s1 and s2 denote the number of digits of
the minuend and the subtrahend. TC denotes a ten crossing and HC a
hundred crossing.

Addition TC Addition with bridging to ten in the range from 0-20.

Subtraction TC Subtraction with bridging to ten in the range from 0-20.

Operation o1,o2

Addition or subtraction of two numbers used as a repetition of the whole
number range. o1 and o2 denote the number of digits of the operation.
Operation 2,2 for example denotes any addition or subtraction skill in
the number range 0-100.

Calculation concepts

Support Addition
Addition of two numbers. The task can be solved using one, ten and
hundred blocks.

Support Subtraction
Subtraction of two numbers. The task can be solved using one, ten and
hundred blocks.

Sets Understanding of operations on sets.

The decision is based on the posterior probabilities delivered by the student model. After each
solved task, the controller fetches the posterior probabilityps|E(t) of the skill s being trained at time
t. Then,ps|E(t) is compared against a lower and an upper threshold, denoted bypls(t) andpus (t). The
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resulting interval defines the optimal training level: if the probability lies betweenthe thresholds, ‘Stay’ is
selected. In contrast, ‘Go Back’ and ‘Go forward’ are selected ifps|E(t) < pls(t) and ifps|E(t) > pus (t),
respectively. Thresholds are not fixed: they converge with more played samples (nc):

pls(t) = pl0s (t) · lc
nc and pus (t) = pu0s (t) · uc

nc (2)

Initial values of the upper (pl0s (t)) and lower (pu0s (t)) thresholds as well as the change rates (lc, uc) are
heuristically determined. The convergence of the thresholds ensures a sufficiently large number of solved
tasks per skill and prevents training the same skill for too long without passing it.
When ‘Stay’ is selected, a new appropriate task is built. Otherwise, a precursor (or successor) skill is
selected by fetching all precursor (successor) skills of the current skill and feeding them into a decision
tree. Figure 3 shows the simplified decision trees for ‘Go Back’ and ‘Go Forward’. The nodes of the
trees encode selection rules that were designed using experts’ advice.

# remediation

skills?

# unplayed

precursors?

# main

skills?

0 0 0

n n

support
skill

B
unplayed

precursors

all pre-
cursors

n

Recursion

skill sr set?
# main skills?

no 0

select sr

yes n

support
skill

F

Fig.3. Decision trees for ‘Go Back’ (left) and ‘Go Forward’ (right) options. At the end nodes (triangles), the
candidate skill with lowest posterior probability (‘Go Back’ option) with posterior probability closest to 0.5 (‘Go
Forward’ option) is selected.

For the ‘Go Back’ option, remediation skills are preferred: If error matching patterns of the bug library
are detected, the relevant remediation skill is trained. A typical mistake in addition involving two digit
numbers would be to sum up all the digits, i.e. ‘23 + 12 = 8’ (skillAddition 2,2in Fig. 2). This mistake
indicates that the child has not yet understood the Arabic notation system in the number range from
0-100. A remediation skill for this error is the training of the Arabic notation system in this range, i.e.
decomposing numbers between 0 and 100 into tens and units and thus learningthe meaning of the digit
position of a number (skillArabic->Concretein Fig. 2). If the child did not commit any of the typical
errors, the controller prefers unplayed precursor skills. The hierarchical skill model assumes that the
precursor skills of a skills are a prerequisite for knowings. If the child fails that skills, the controller
tries to find the particular precursor skill that might cause the problem. For the played precursor skills, the
controller assumes that the child already knows them (since they have beenplayed and passed) and hence
an unplayed precursor skill is selected. Finally, main skills are preferredover support skills. Main skills
require a combination of abilities to solve them, while support skills train specific abilities and serve as
basic prerequisites. In arithmetic operations, main skills involve mental calculation, while support skills
involve the use of material (unit, ten and hundred blocks) to solve the task. Therefore, if a child fails
in solving addition problems with two-digit numbers (for example ‘23 + 12 = ?’) the controller first
checks if the child can do mental calculation (= main skill) of simpler addition problems (for example
‘23 + 2 = ?’). If this is the case, the support skill modelling the operation with material can be picked. If
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however the child also fails in solving the simpler addition problem, this easier skillneeds to be trained
first. Hence, the main skills are always checked first. If there is more than one candidate precursor
skill after crossing the decision tree (i.e. going through all the rules), the candidate skill with the lowest
posterior probability is selected. Therefore, the controller selects the skillwhere the child has the lowest
proficiency.
For the ‘Go Forward’ option, recursion skills are preferred. If a user fails to master skillsA and goes
back tosB, sA is set as a recursion skill. After passingsB, the controller will return tosA. If a child for
example fails solving addition problems with two-digit numbers (for example ‘23 +12 = ?’) and goes
back to train an easier skill (for example ‘23 + 2 = ?’), the child will go back tothe addition problems
with two-digit numbers after passing that easier skill. If no recursion skill isset, the controller again
prefers main skills over support skills. If the child masters solving addition problems with two-digits (for
example ‘23 + 12 = ?’) the controller will go further to ask addition problems involving a ten crossing
(for example ‘23 + 18 = ?’). This rule ensures that children having a good mathematical knowledge take
the fastest way through the skill net. The support skill modelling the task ‘23+ 18 = ?’ using material
will only be played if the child does not master the mental calculation. If there is more than one candidate
successor skill at the end of the decision tree, the candidate skill with posterior probability closest to 0.5
(maximization of entropy) is selected. This final rule ensures that the gain ofknowledge about the child
is maximized.
To consolidate less sophisticated skills and to increase variability, the controller uses selective recalls.
This control design exhibits the following advantages:

1. Adaptability: the network path targets the needs of the individual user (Fig. 4).

2. Memory modelling: forgetting and knowledge gaps are addressed by going back.

3. Locality: the controller acts upon current nodes and neighbours, avoiding unreliable estimates of
far nodes.

4. Generality: the controller is domain model-independent: it can be used on arbitrary discrete struc-
tures.

EXPERIMENTAL SETUP

To measure the quality of the controller and the student model, the training program was assessed in two
user studies. All the analyses performed are based on external effectiveness tests and input data from
participants of these two studies.

Study design and participants

Experimental data stem from 63 participants (45 females, 18 males) of two on-going large-scale studies
(Germany and Switzerland). Participants were divided into a training group(n = 33,66.6̄% females)
completing a 6-weeks training and a waiting group (n = 30,76.6̄% females) starting with a 6-weeks rest
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Addition 1,1

3+5=8

Addition 1,1 TC

8+5=13

Support Addition 2,1

21+3=24

Addition 2,1

21+3=24

Support Addition 2,2

21+15=36

Addition 2,2

21+15=36

Addition 2,1 TC

28+5=33

Addition 2,2 TC

28+15=43

Fig.4. Skill sequences of three children in addition. The notation is consistent with Fig. 2. User 2 and 3 passed
all skills in the range, while user 1 did not pass this range within the training period. The length of the rectangles
indicates the number of samples.

period, followed by a 6-weeks training. The groups were matched according to age (training group:M =
9.26 years (SD 0.94), waiting group:M = 9.39 years (SD 1.09),t(61) = -0.49,p = .63) and intelligence
(training group CFT/BUEGA-score: 101.09 (SD 11.38), waiting group CFT/BUEGA-score: 100.13 (SD
10.74),t(61) = 0.34,p = .73) (Cattell et al., 1997; Esser et al., 2008). All participants attended the2.-
5. grade of public elementary schools and were German-speaking. Mathematical performance of the
participants was evaluated at the beginning of the study (t1), after 6 weeks (t2) and after 12 weeks (t3).
The children exhibited difficulties in learning mathematics indicated by a below-average performance
in the standardized arithmetic testHRT (addition T-score: 34.14 (SD 6.71), subtraction T-score 33.76
(SD 7.36)) (Haffner et al., 2005). At the beginning of the study (t1), there was no significant difference
in arithmetic performance between the training and waiting group (addition:t(61) = -0.25,p = .80,
subtraction:t(61) = -1.30,p = .20). The participants were required to train with the program for a period
of six weeks with a frequency of five times per week, during sessions of 20 minutes. For the present
analyses, only children with at least 24 complete training sessions were included.

External instruments

Training effects were measured using paper-pencil and computer-based mathematical performance tests.
On the one hand, arithmetic performance was assessed using the addition and subtraction subtests of the
HRT (re-test reliability: additionrtt = .82, subtractionrtt = .86). In these subtests, children are provided
with a list of addition (subtraction) tasks ordered by difficulty. The goal ofthe test is to solve as many
tasks as possible within a time frame of 2 minutes. Thus, theHRT measures speed. On the other hand,
arithmetic performance was also measured with theAC (arithmetic test), which exists in a paper-pencil
and a computer-based version. In this test, children solve a series of addition (and subtraction) tasks
ordered by difficulty. Tasks were presented serially in a time frame of 10 minutes. In contrast to the
HRT , theAC also contains more complex tasks in the number range from 0-100.
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Input data

Experimental data consisted of input logs recorded from 63 participants and containing six weeks of
training (training group:t1 − t2, waiting group:t2 − t3). On average, each user completed 29.77 (SD
2.43, min 24, max 36) sessions. The total number of solved tasks was 1540 (SD 276, min 1011, max
2179), while the number of solved tasks per session corresponded to 51.70 (SD 7.86, min 37.63, max
75.1).
To facilitate the analysis of the log files, the concept of ‘key skills’ is introduced. Key skills are defined
in terms of subject-dependent difficulty, they are the hardest skills for theuser to pass. More formally,

Definition 1. A skill sA is a key skill for a userU , that issA ∈ KU , if the user went back to a precursor
skill sB at least once before passingsA.

From this follows that the set of key skillsKU may be different for each userU (and it typically is).
In the sequence in Fig. 4, user2 has no key skills, while user3 has one key skill (coloured in green) and
user1 has several key skills.

RESULTS & DISCUSSION

The analyses performed on the input data and the external effectiveness measures assess the quality of
the training program and in particular the quality of the student model and the controller mechanism
according to different criteria:

1. Efficacy of training program: We show that the participants improved over the course of the train-
ing. This improvement is demonstrated by an increased mathematical performance within the
system (Sec.System-internal improvement analysis). Furthermore, we also include first pilot
results of external arithmetic tests (Sec.Training effects).

2. Assessment of controller design: We show that the introduced controlmechanism significantly
speeds up learning (Sec.Controller design).

3. Adaptability: We show that the program rapidly adapts to the knowledge level of the user (Sec.Con-
troller adaptability ).

However, the analyses of the logfiles are not only useful to assess the quality of the training program, but
also to understand properties of the users and the skills of the student model. We analyse the performance
of the users in the program as well as properties of skills (Sec.Key skills). Such analyses can lead to a
better understanding of the mathematical knowledge of the users.

Training effects

A repeated measures general linear model (GLM) analysis was conducted to evaluate training effects
(t1−t2) as a within-subject factor and group (Training/Waiting) as a between-subject factor. Parametric t-
tests were used to calculate differences between measurement points (paired-sample t-test,t1−t2, t2−t3).
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Table 2 summarizes the means and standard deviations of the mathematical performance measures for all
measurement points, including calculated statistical results. There were no between-group performance
differences prior to the intervention. The training induced a significant improvement in subtraction, while
no improvement was found after the waiting period (HRT interaction:p < .001, AC interaction:p < .001).
Children also improved significantly in addition, however no significant difference between the training
and the waiting group was found (HRT interaction:p = .18, AC interaction:p = .16). Surprisingly, also
the waiting group improved significantly in the HRT addition test, this effect can however be attributed
to outliers (one child probably not understanding the test correctly att1 and therefore solving only three
tasks within the two minutes). Removing the outlier leads to a significant interaction (p = .018).

Table2
Mathematical performance of training and waiting group over the courseof the study: Mean (SD) test scores (number of
correctly solved tasks) fort1, t2 and t3. Interaction between training and group (F-score) as well as differences between
measurement points (t-score).

t1 t2
t-score
(t1 − t2)

F-score
(t1 − t2)

t3
t-score
(t2 − t3)

HRT Add.
TG 15.64 (5.22) 18.36 (5.31) 5.20***

1.82
- -

WG 16.53 (6.10) 18.23 (6.00) 3.08** 19.37 (5.74) 1.97

HRT Sub.
TG 12.06 (5.27) 16.15 (5.17) 8.36***

15.71***
- -

WG 14.00 (6.65) 14.63 (6.25) 0.86 17.33 (6.04) 4.84***

AC Add.
TG 68.58 (25.82) 77.22 (24.73) 3.15**

1.99
- -

WG 67.83 (29.79) 69.94 (27.83) 0.55 73.60 (20.92) 1.41

AC Sub.
TG 50.91 (26.12) 63.13 (26.98) 5.40***

14.39***
- -

WG 53.54 (25.29) 53.21 (27.19) 0.14 65.38 (23.26) 4.22***

* p < .05, ** p< .01, *** p < .001

The improvement in subtraction is supported by additional evidence: The percentage of training time
children spent with subtraction tasks. In fact, 62.5% (78.4% if consideringkey skills only) of arithmeti-
cal tasks consist of subtractions. As children had especially difficulties insubtractions with ten crossings
(Sec.Key skills) the improvement might stem from a better understanding of subtracting with carry or
from higher automation and thus lower working memory load. However, subtraction is also consid-
ered the main indicator for numerical understanding (Dehaene, 2011). Consistently with this, improved
number line representation is directly measurable from the recorded input data. Input data used in the
analysis consists of all landing tasks (denoted as samples with indexi) solved by each child. Each sam-
ple can be characterized by a variablexi which denotes the index of the sample, i.e. the normalized
measurement point of that sample (xi ∈ [0, 1]), and a dependent variableyi denoting the deviance from
the correct position. The analysis of the accuracy was performed usinga non-linear mixed effect model
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(NLME) (Pinheiro and Bates, 1995):

yi ∼ Poisson(λi) with λi = eb0+b1·xi+ui and ui ∼ N (0, σ2) (3)

whereui denotes the noise term. Fitting was performed using one group per user. Over time, children
achieved greater accuracy when giving the position of a number on a number line (Fig. 5, top). The
intercept (coefficientb0) was significant only for the number range 0-100, indicating that childrenstarted
at different accuracy levels in the number range 0-10. The significance of b1 in both number ranges
demonstrates the significant improvement in accuracy (Fig. 5, bottom).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

D
e
v
ia

n
c
e
 (

%
) 

[y
]

Time [x]

0 0.2 0.4 0.6 0.8 1

D
e
v
ia

n
c
e
 (

%
) 

[y
]

Time [x]

0

5

10

15

20

25

30

Number range Coefficient Estimate (SD) sig. 95% ci

0-10
b0 -0.08 (0.06) 0.21 [-0.20 0.04]
b1 -0.97 (0.07) < 1e-4 [-1.11 -0.84]

0-100
b0 2.25 (0.04) < 1e-4 [2.17 2.34]
b1 -0.54 (0.02) < 1e-4 [-0.57 -0.51]

Fig.5. Landing accuracy in the number range 0-10 (left) and 0-100 (right) increases over time. The x-axis denotes
the normalized sample indices (Time[x]), while the y-axis displays the deviance from the correct position. Exact
coefficients of NLME along with standard deviation (in brackets) are plotted by respective significance (sig.) and
confidence intervals (ci).

The lines of points (at 10%, 20% and 30% in Fig. 5 (left)) arise from the nature of the LANDING game
(Fig. 1(a)): The children need to indicate the position of a given number bysteering a falling cone with
the joystick. If nothing is done, the cone will always land at the position of thefive (in the number range
0-10), which leads to deviations of exactly 10% (if the given number was 4 or 6), 20% (if the given
number was 3 or 7) or 30% (if the given number was 2 or 8).
The improvement measured in subtraction, number representation and partlyaddition is promising and
builds the basis for further extensions of the training environment and control structure. One possible
future feature could be the incorporation of answer times into the task assessment. In the number range
from 0-10, fact retrieval is very important and can only be tested by taking answer times into account.
Another addition could be to teach and assess the strategies used to perform arithmetic operations.
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System-internal improvement analysis

To quantify improvement, the learning rate overKU was measured from all available samples (both if
the participant mastered them during training or not). One samplexi denotes exactly one task of one
user. The variableyi denotes the result (correct or wrong solution) of that task. Therefore, the analysis
includes all the tasks that the children solved at their respective key skills.The improvement over time
I([tKU

, tend]) was computed using a NLME model employing one group per user and key skill:

yi ∼ Binomial(1, pi) with pi =
1

1 + e−(b0+b1·xi+ui)
and ui ∼ N (0, σ2) (4)

whereui denotes the noise term. The sample indicesxi have been normalized (xi ∈ [0, 1]).
The resulting model (Fig. 6) for all skills exhibits an estimated mean improvement of 21.8% (95% con-
fidence interval = [0.21 0.23]). Interestingly, subtraction exhibits a lowerimprovement than addition.
Given the external training effects (Sec.Training effects), we would expect the opposite. However, chil-
dren have a lot more subtraction key skills than addition key skills (Sec.Key skills). Therefore, despite
the average improvement per skill being higher for addition, the total improvement is still higher for sub-
traction. Furthermore, the higher number of key skills in subtraction leads to more practice in subtraction
skills. The conducted analysis measures the learning progress within the system and demonstrates that
children managed to improve their abilities in areas that were difficult for them.

Key skills

Although the key skills vary a lot over the children, some skills seem to be difficult for most of the
children and thus more likely to be key skills: Nine skills were key skills for more than one third of
the children. Of these skills, five were subtraction skills, four number representation skills and one an
addition skill. Even more than 50% of the children had problems with the top three key skills: Indicating
the position of a number on a number line from 0-100 (Arabic→Numberlinein Fig. 2) was difficult for
52% of the children. This result is in line with previous work, which observed deficits of mental number
representation in children with DD (Kucian et al., 2006; Mussolin et al., 2010; Price et al., 2007). More
than 50% of the children also had problems in subtraction in the number range from 0-100, when a ten
crossing was involved (Subtraction 2,1 TC and Subtraction 2,2 TC in Fig. 2).This result again confirms
the link between subtraction and spatial number representation (Dehaene,2011).

The mathematical performance of the users, i.e. their mathematical knowledge can also be assessed
by their number of key skills. The normalized number of key skills is computed asthe number of key
skills divided by the number of totally played skills. On average, the normalizednumber of key skills
per user was 0.27 (SD 0.14). This number can be interpreted as follows: On average, the children had
difficulties with 27% of the skills that they played. When breaking this number down into the different
categories (number representation, addition and subtraction) it can be seen that most problems arose in
subtraction. The normalized number of key skills was 0.26 (SD 0.19) in numberrepresentation, 0.17 (SD
0.2) in addition and 0.37 (SD 0.15) in subtraction. The distribution over the normalized key skill numbers
in the different categories are displayed in Fig. 7. Interestingly, we observe that the normalized key skill
numbers in addition and number representation skills follow an exponential distribution. The long tail of



T. Käser et. al. / Modelling and Optimizing Mathematics Learning in Children 15

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
all
add
sub
numrep

Time [x]

P
ro

b
a
b
ili

ty
 o

f 
c
o
rr

e
c
tn

e
s
s
 [
y
]

Category Coefficient Estimate (SD) sig. 95% ci

All
b0 0.06 (0.05) 0.22 [-0.03 0.14]
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Addition
b0 -0.14 (0.09) 0.13 [-0.33 0.04]
b1 1.36 (0.11) < 1e-4 [1.14 1.59]

Subtraction
b0 0.11 (0.08) 0.15 [-0.04 0.27]
b1 0.79 (0.07) < 1e-4 [0.66 0.93]

Number
representation

b0 0.08 (0.07) 0.26 [-0.06 0.21]
b1 0.94 (0.06) < 1e-4 [0.82 1.06]

Fig.6. The percentage of correctly solved tasks (of key skills) increases over the training period by 21.8% for all
skills (top). The normalized sample indicesxi (Time[x]) are displayed on the x-axis, while the y-axis shows the
ratio of correct solutions. Improvements for addition (add), subtraction (sub) and number representation (numrep)
are in the same range. Exact coefficients of NLME along with standard deviation (in brackets) are plotted by
respective significance (sig.) and confidence intervals (ci) (bottom).

the distribution demonstrates that most children did not have difficulties in thesecategories. Rather, only
few children had strong difficulties in these categories. On the other hand,the normalized number of
key skills in subtraction is significantly higher than in the two other categories (indicated by a two-sided
t-test: p < .001 for both categories). The key skill analysis once more also shows the heterogeneity of
the children: The number of key skills as well as the key skill set itself varieda lot over the children.
Nevertheless, we can observe an accumulation in subtraction. Having moreinput data available, a more
detailed analysis of key skills will be conducted in future work.
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Fig.7. Distribution over normalized number of key skills for number representation skills (left), addition skills
(center) and subtraction skills (right).

Controller design

Further analysis demonstrates that the possibility to go back to easier (playedor unplayed) skills yields a
significant beneficial effect. The user not only immediately starts reducingthe rate of mistakes, but also
learns faster. The log files recorded 973 individual cases of going back. On average, 20.6 cases (SD 12.1)
of going back are recorded per user. From Fig. 8 it can be seen that the number of going back cases varies
a lot among the users, i.e. the users exhibit very different levels of mathematical knowledge. All cases in
which users play a certain skill (samplesxb), go back to one or several easier skills, and finally pass them
to come back to the current skill (samplesxa) are incorporated in the analysis. The variablexb therefore
denotes all tasks before going back, whilexa stands for the tasks solved after going back. Per each
casek the correct rate over timeca,k (cb,k) is estimated separately forxa andxb. Fitting is performed
via logistic regression using bootstrap aggregation (Breiman, 1996) with resampling (B = 200). The
direct improvementdk is the difference between the initial correct rateca,k(atxa = 0) and the achieved
correct ratecb,k(at xb = 1). The improvement in learning raterk is the difference in learning rate over
ca,k andcb,k. The distributions over̄d (mean overdk) andr̄ (mean overrk) are well approximated by a
normal distribution (Fig. 9 top) with means greater than0. The rate of correct tasks̄d is increased by 0.14
while the learning ratēr is even increased by 0.36 after going back. Both measurements are positive on
average and a two-sided t-test indicates their statistically significant difference from 0 (Fig. 9 bottom).
To summarize, children reduce the rate of mistakes immediately after going back (demonstrated by the
significantly positived̄) and exhibit a higher learning rate (demonstrated by the significantly positive r̄).

Controller adaptability

During the study, all participants started the training at the lowest (easiest) skill of the net. The adaptation
time [t0, tKU

] is defined as the period between the startt0 of the training and the first time the user hits
one of his key skillstKU

. On average, the participants reached theirtKU
after solving 148.3 tasks (SD

122.6, min 17, max 534). The number of complete sessions played up to this point was 2.1 (SD 1.97,
min 0.2, max 10.92). These results show that the model rapidly adjusts to the stateof knowledge of the
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user. The fast adaptability is also confirmed by the fact that 52.4% of the children hit their first key skill
already in the number range 0-10, 38.1% of children in the number range 0-100 and only 9.5% of the
children in the number range 0-1000. The fast adaptation to the the child’s knowledge ensures that each
child trains at the optimal difficulty level already after a few days of training.

CONCLUSION

This study presents a model of the cognitive processes of mathematical development and an automatic
control algorithm acting on it. The student model is represented by a dynamicBayesian network which
incorporates domain knowledge. The introduced control algorithm is decision-based and enables the op-
timization of the learning process through targeted cognitive stimulation. The reported data demonstrate
a significant increase in mathematical performance, measured by externaleffectiveness tests as well as
from input logs. The large-scale input data analysis also proved the efficiency and adaptability of the stu-
dent model and the control algorithm. In particular, the possibility to go back toeasier skills significantly
(and rapidly) reduces the error rate and yields an overall increased learning rate. The student model has
the potential to be further refined by incorporating additional available experimental data.
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