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Abstract. This study introduces a student model and control algorithptimizing mathematics learning in chil-
dren. The adaptive system is integrated into a computexebimaining system for enhancing numerical cognition
aimed at children with developmental dyscalculia or diffies in learning mathematics. The student model con-
sists of a dynamic Bayesian network which incorporates diokr@aowledge and enables the operation of an online
system of automatic control. The system identifies appatptasks and exercise interventions on the basis of esti-
mated levels of accumulated knowledge. Student actionsvataated and monitored to extract statistical patterns
which are useful for predictive control. The training systis adaptive and personalizes the learning experience,
which improves both success and motivation. Comprehensaténg of input data validates the quality of the
obtained results and confirms the advantage of the optintiagdng. Pilot results of training effects are included
and discussed.
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INTRODUCTION

Arithmetic skills are important in modern society, as numerical cognition and latitmos are om-

nipresent in everyday life. However, many children suffer from diffies in learning mathematics.
Developmental dyscalculia (DD) is a specific learning disability affecting tugiigition of arithmetic

skills (von Aster and Shalev, 2007). Genetic, neurobiological, and epddegical evidence indicates
that DD is a brain-based disorder, although poor teaching and envirtahaeprivation might also be
relevant (Shalev, 2004). Children with DD show a deficit in basic numlesiéis such as number com-
parison (Butterworth, 2005a,b; Landerl et al., 2004; Rubinsten ankH2005) and exhibit fundamental
problems in number processing (Cohen Kadosh et al., 2007; Kucian 20@6; Mussolin et al., 2010;
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Price et al., 2007). Furthermore, they tend to experience difficulties iniraag) arithmetic procedures
and show a deficit in fact retrieval (Geary et al., 1992; Ostad, 19999)1 DD has an estimated preva-
lence of 3-6% in English- and German-speaking countries (Badian; 1888s et al., 1994; Shalev and
von Aster, 2008).

The relatively high prevalence of DD suggests that it is important to invéstiggervention approaches
to prevent or remediate learning difficulties in mathematics. The range of gxistarventions includes
remedial programs for elementary school children (Dowker, 2001franin et al., 2003; Kucian et al.,
2011; Lenhard et al., 2011; Wilson et al., 2006) as well as preventogrgms for pre-school children
at risk of developing mathematical difficulties (Griffin et al., 1994; Van De Rijt Van Luit, 1998;
Wright, 2003). However, only a few of these programs are computezebgand have been scientifi-
cally evaluated). ‘Number Race’ (Wilson et al., 2006) focuses on therng@f basic numerical skills,
while ‘Rescue Calcularis’ (Kucian et al., 2011) combines the training atbasmerical abilities with
the training of arithmetic skills. ‘Elfe and Mathis’ (Lenhard et al., 2011) alifrestraining to the Ger-
man scholar curriculum. All of these approaches are carefully designethildren with difficulties in
learning mathematics, however, they lack user adaptation.

Yet, adaptability is very important for children suffering from learning dikiges as these children are
highly heterogeneous and thus a high grade of individualization is reegesstelligent tutoring systems
can contribute to this need. Current systems use approaches sudwdadge tracing (Corbett and An-
derson, 1994), performance factors analysis (Pavlik et al., 2008adBayesian networks (Mislevy
et al., 1999) to estimate, assess and predict the knowledge of the ustae domain of mathemat-
ics, existing systems mainly focus on specific aspects of the domain (Koedinhgk, 1997; Mislevy
et al., 1999; Rau et al., 2009). Previous work exists not only for stusedels, but also for control
mechanisms. A plethora of advanced control approaches aimed at optimizitiomplex mechanisms
was proposed (Garcia et al., 1989). Controllers can be based uptaitexodels obtained through
intervention-driven identification (Busetto and Buhmann, 2009). Relatedigiive models aimed at
treating learning disabilities have been introduced for spelling learningfidaa et al., 2011; Baschera
and Gross, 2010).

The present study is based on the intelligent tutoring system 'Calculadsdiket al., 2012). In this sys-
tem, we model the cognitive processes of mathematical development usingraidyBayesian network.
Our student model represents different mathematical skills and their depers. An automatic control
mechanism aimed at optimizing learning and acting on the skill net is introdubedddsign of the skill
net allows for a non-linear control mechanism. In contrast to previopgaphes, we allow movements
along all edges of the skill net (particularly also backward movementsghwemables us to implicitly
model forgetting and knowledge gaps. The model’s predictive contedllen a significant level of cog-
nitive stimulation which is user- and context-adaptive. We assess the retficéad adaptability of the
introduced student model and control mechanism based on input lagsvi user studies in Germany
and Switzerland. Furthermore, we analyse properties of users andusiatisin the model. Finally, we
also include first pilot results of the obtained training effects.
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TRAINING ENVIRONMENT

Current neuropsychological models postulate the existence of tasKispepresentational modules lo-
cated in different areas of the brain. The functions of these moduleslakant to both adult cognitive
number processing and calculation (Dehaene, 2011). Dehaene’scoigdemodel (Dehaene, 1995)
presumes three representational modules (verbal, symbolic, and amat@gmnitude) related to num-
ber processing. These modules develop hierarchically over time (von &sdeShalev, 2007) and the
overlap of the number representations increases with growing mathematitsaktanding (Kucian and
Kaufmann, 2009). The development of numerical abilities follows a subggeéndent speed which is
influenced by the development of other cognitive as well as domain deatsliies and biographical
aspects (von Aster and Shalev, 2007). Hence, when teaching mathemaatitstantial degree of indi-
vidualization may not only be beneficial, but even necessary. The inteddtmmputer-based training
addresses these challenges by

1. structuring the curriculum on the basis of the natural development ofematical understanding
(hierarchical development of number processing).

2. introducing a highly specific design for numerical stimuli enhancing tHerdifit representations
and facilitating understanding. The different number representatiahshair interrelationships
form the basis of number understanding and are often perturbed ialdykc children (von Aster
and Shalev, 2007).

3. training operations and procedures with numbers. Dyscalculic chitdrehto have difficulties
in acquiring simple arithmetic procedures and show a deficit in fact retri@edry et al., 1992;
Ostad, 1997, 1999).

4. providing a fully adaptive learning environment. Student model antta@iting algorithm optimize
the learning process by providing an ideal level of cognitive stimulation.

The training program is composed of multiple games in a hierarchical strucBammes are structured
according to number ranges and further grouped into two areas. $harfa Part A) focuses on “num-
ber representations and understanding”. It trains the transcodingd&eiternative representations and
introduces the three principles of number understanding: cardinalityyabitgl, and relativity. Games
in this area are structured according to current neuropsychologia®lsifvon Aster and Shalev, 2007;
Dehaene, 1995). The first area is exemplified by taehiNG game (Fig. 1(a)). In this game, children
need to indicate the position of a given number on a number line. To do sbing fzone has to be
steered using a joystick. The second areat B) is that of “cognitive operations and procedures with
numbers”, which aims at training concepts and automation of arithmeticaltagrexaThis is illustrated
by the Rus-MINus game (Fig. 1(b)). Children solve addition and subtraction tasks using olafck
tens and ones to model them. The different games are categorizediagdordheir complexity and
relative importance. Main games require a combination of abilities to solve theihe, support games
train specific skills and serve as basic prerequisites. Difficulty estimatiomianarchy result from the
development of mathematical abilities.
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(a) LANDING game. (b) PLus-MINUS game.

Fig.1. In the LANDING game, the position of the displayed number (29) needs todieated on the number line.
In the RLUS-MINUS game, the task displayed needs to be modelled with the blddkesis and ones.

SELECTION OF ACTIONS

A fundamental component of the intelligent tutoring system is its pedagogicdililerothe subsystem

making the teaching decisions. It selects the skills for training and determieexctions for the se-

lected skill. To adaptively assess user inputs and dynamically optimize degitiersystem consists of
mechanisms of model predictive control (Garcia et al., 1989). The st#te tdarner is estimated by the
system and thus identified according to its internal representation: thenstunddel. An attached bug
library enables recognition of error patterns.

Student model

The mathematical knowledge of the learner is modelled using a dynamic Bayesiaork (Friedman

et al., 1998). The network consists of a directed acyclic graphical megetsenting different mathe-
matical skills and their dependencies. Two skillsandsg have a (directed) connection if mastering
skill s4 is a prerequisite for skilkz. The belief of a skills 4; (probability that the skill is in the learnt
state) is conditioned over its parents(see Charniak (1991) for an introduction to Bayesian networks):

D(SALy vy SAR) = HpsAi where ps,. = p(sai|m) Q)
As the skills cannot be directly observed, the system infers them by ptasikg and evaluating user ac-
tions. Such observation#] indicate the presence of a skill probabilistically. The postenigrs g, of
the net are updated after each solved fagking the sum-product algorithm (libDAI (Mooij, 2010)). We
initalize all probabilities to 0.5 as we do not have any knowledge about the matioal proficiency of a
learner at the beginning of the training (the students are of differerdradjbave different mathematical
skill levels). This initalization is in accordance with the principle of maximum entrdhe dynamic
Bayesian net has a memoryfi.e. posteriors are calculated over the last five time steps.

The skill net representation is ideal for modelling mathematical knowledgeedsdming domain ex-
hibits a distinctively hierarchical structure. The structure of the net \eagyded using experts’ advice
and incorporates domain knowledge. The design of the net was inspinedrk from Falmagne et al.
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(1990). Like in knowledge space theory, we order skills hierarchicaltyassume that some skills can
be surmised by others. If a child for example can compute additions involtiEg@ossing, we assume
that the child also knows addition without ten crossing. The basic assumptioat i know skills 4,
the child needs to know all the precursor skillssof. However, in our case, each skill is assigned to
exactly one task. Our work can also be related to partial order knowletdgetures (Desmarais et al.,
1995) which also model dependencies between skills as conditionalqiiibeés. Our resulting student
model contains 100 different skills as illustrated in Fig. 2. Table 1 explaindittezent skills of the skill
net and their notation used in Fig. 2.

The skills inPart Aare ordered and colour-coded according to the different numbgesad10, 0-100,
and 0-1000. Within each number range, the hierarchy follows the teprdevelopmental model (von
Aster and Shalev, 2007): The linguistic symbolization (step 2), arabic syzation (step 3), and ana-
logue magnitude representation (step 4) develop based on a (probdidyijed representation of car-
dinal magnitude of numbers (step 1). Following this model, the transcodingebatthe linguistic and
arabic symbolization\ferbal—Arabic) is trained before giving the position of a written number on a
number line Arabic—Numberling.

Skills in Part B can also be divided into the number ranges 0-10, 0-100 and 0-10@u(@wded in
Fig. 2). Furthermore, they are ordered according to their difficulties. difficulty of a task depends not
only on the magnitude of the numbers included in the task and the complexity ofsthebta also on
the representation of the task and the means allowed to solve it. A task sug8s@2=87" Addition
2,2) is considered more difficult than computing ‘13+5=18dition 2,3. On the other hand, modelling
‘65+22=87" with one, ten and hundred blockSufpport Addition 2,Ris easier than calculating it men-
tally. And finally, tasks including ten (or hundred) crossings such ag28592’ (Addition 2,2 TG are
more complex to solve than tasks without crossings.

In general, each skill of the hierarchical network is associated with aitaskthere exists a game type
for each skill in the network. Thelt®s-MINuUs game (SecTraining Effects) is for example associated
with all addition and subtraction skills allowing the use of material (for exarSpigport Addition 2,2
On the other hand, theANDING game (Sec.Training Effects) is assigned to all skills involving the
positioning of a number on a number line (for examfstabic—Numberling.

Controller

The selection of actions is rule-based and non-linear. Rather than fofjaavepecified sequence to
the goal, learning paths are adapted individually. Therefore, eachtchid different skills and hence
plays different games during training (Fig. 4). This increases the gmis#ible actions (due to multiple
precursors and successors). After each solved task, the conseldets one of the following options
based on the current state:

1. Stay. Continue the training of the current skill;
2. Go back Train a precursor skill;

3. Go forward: Train a successor skill;
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Fig.2. Skill net containing the skills of part A (left) andmp® (right). The different colours denote the different
number ranges 0-10 (yellow, blue), 0-100 (pink, green), @id00 (red, purple). Some skills from part B have
been duplicated to part A to denote the connections betwesetwb parts.
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Table 1
Explanation of skills and notations used in the skill net.
Area Notation Definition
Part A
Concrete Number represented as a set of objects.
gumber . Verbal Spoken number.
epresentations . .
P Arabic Written number.
Numberline Number represented as a position on a number line.
Transcoding r1—r2 Translation of number from number representation rl to r2
Ordinal 1 Predecessor and successor of a number need to be given
Ordinality Relative Calculate indirect (+/-2, +/-3) predecessors and successors oéa gi
number.
Ordinal 2 Judge, if the given numbers are sorted in ascending order.
Ordinal 3 Guess a secret number.
Subitizing Simultaneous perception of numbers from 1-4.
Other Estimation Which of three displayed point sets corresponds to the giveher@
Counting Forwards (and backwards) counting in the according nurahge.
Part B

Mental calculation

Addition al,a2

Subtraction s1,s2

Addition TC
Subtraction TC

Operation 01,02

Addition of two numbers. al and a2 denote the number of digits of the
addends. TC denotes a ten crossing and HC a hundred crossing.

Subtraction of two numbers. sl and s2 denote the number of digits of
the minuend and the subtrahend. TC denotes a ten crossing and HC a
hundred crossing.

Addition with bridging to ten in the range from 0-20.
Subtraction with bridging to ten in the range from 0-20.

Addition or subtraction of two numbers used as a repetition of the whole

number range. ol and 02 denote the number of digits of the operation.
Operation 2,2 for example denotes any addition or subtraction skill in

the number range 0-100.

Calculation concepts

Support Addition

Support Subtraction

Sets

Addition of two numbers. The task can be solved using one, ten and
hundred blocks.

Subtraction of two numbers. The task can be solved using one, ten and
hundred blocks.

Understanding of operations on sets.

The decision is based on the posterior probabilities delivered by the stodetel. After each
solved task, the controller fetches the posterior probabilify:(¢) of the skill s being trained at time
t. Then,p, g (t) is compared against a lower and an upper threshold, denoted fhyandp®(t). The
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resulting interval defines the optimal training level. if the probability lies betvileethresholds, ‘Stay’ is
selected. In contrast, ‘Go Back’ and ‘Go forward’ are selected)jf(t) < pL(t) and ifpy p(t) > p(t),
respectively. Thresholds are not fixed: they converge with more glsgmples+.):

ph(t) = pO(t) - 1 and p(t) = pUO(t) - u " )

Initial values of the upper’(t)) and lower (u%(t)) thresholds as well as the change raigsu(.) are
heuristically determined. The convergence of the thresholds ensuréfiegestly large number of solved
tasks per skill and prevents training the same skill for too long without pagsin

When ‘Stay’ is selected, a new appropriate task is built. Otherwise, angac{or successor) skill is
selected by fetching all precursor (successor) skills of the curkéhaed feeding them into a decision
tree. Figure 3 shows the simplified decision trees for ‘Go Back’ and ‘Gwé&a’. The nodes of the
trees encode selection rules that were designed using experts’ advice.

# remediation # unplayed - # main Recursion L 0
e 2 — o 0, all pre- e 0 - , —> #mainskills? —A
skills? precursors? skills? support skill s, set? support
skKil SKI

in 4
o & [ e | & 0 i A

precursors

Fig.3. Decision trees for ‘Go Back’ (left) and ‘Go Forwardight) options. At the end nodes (triangles), the
candidate skill with lowest posterior probability (‘Go Baoption) with posterior probability closest to 0.5 (‘Go
Forward’ option) is selected.

For the ‘Go Back’ option, remediation skills are preferred: If error miagipatterns of the bug library
are detected, the relevant remediation skill is trained. A typical mistake in agditiolving two digit
numbers would be to sum up all the digits, i.e. ‘23 + 12 = 8’ (skildition 2,2in Fig. 2). This mistake
indicates that the child has not yet understood the Arabic notation systere imuthber range from
0-100. A remediation skill for this error is the training of the Arabic notatiostsm in this range, i.e.
decomposing numbers between 0 and 100 into tens and units and thus |¢aeninganing of the digit
position of a number (skilArabic->Concretein Fig. 2). If the child did not commit any of the typical
errors, the controller prefers unplayed precursor skills. The Huei@al skill model assumes that the
precursor skills of a skilk are a prerequisite for knowing If the child fails that skills, the controller
tries to find the particular precursor skill that might cause the problem. Eqi@lyed precursor skills, the
controller assumes that the child already knows them (since they havelaged and passed) and hence
an unplayed precursor skill is selected. Finally, main skills are preferredsupport skills. Main skills
require a combination of abilities to solve them, while support skills train spedifities and serve as
basic prerequisites. In arithmetic operations, main skills involve mental calaylatidle support skills
involve the use of material (unit, ten and hundred blocks) to solve the tasirefore, if a child fails
in solving addition problems with two-digit numbers (for example ‘23 + 12 = ?%¢ tbntroller first
checks if the child can do mental calculation (= main skill) of simpler addition probl@or example
‘23 + 2 =7"). If this is the case, the support skill modelling the operation wittene can be picked. If
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however the child also fails in solving the simpler addition problem, this easiemslatls to be trained
first. Hence, the main skills are always checked first. If there is more tharcandidate precursor
skill after crossing the decision tree (i.e. going through all the rules),ahdidate skill with the lowest
posterior probability is selected. Therefore, the controller selects thengialle the child has the lowest
proficiency.

For the ‘Go Forward’ option, recursion skills are preferred. If ardads to master skills, and goes
back tosg, s4 is set as a recursion skill. After passing, the controller will return tas 4. If a child for
example fails solving addition problems with two-digit numbers (for example ‘42 £ ?’) and goes
back to train an easier skill (for example ‘23 + 2 = ?’), the child will go backh® addition problems
with two-digit numbers after passing that easier skill. If no recursion skgkis the controller again
prefers main skills over support skills. If the child masters solving additioblpms with two-digits (for
example ‘23 + 12 = ?) the controller will go further to ask addition problemsliving a ten crossing
(for example ‘23 + 18 = ?"). This rule ensures that children having algnathematical knowledge take
the fastest way through the skill net. The support skill modelling the task ‘28 = ?’ using material
will only be played if the child does not master the mental calculation. If thereiis than one candidate
successor skill at the end of the decision tree, the candidate skill withripogieobability closest to 0.5
(maximization of entropy) is selected. This final rule ensures that the g&imosfledge about the child
is maximized.

To consolidate less sophisticated skills and to increase variability, the contredle selective recalls.
This control design exhibits the following advantages:

1. Adaptability the network path targets the needs of the individual user (Fig. 4).
2. Memory modellingforgetting and knowledge gaps are addressed by going back.

3. Locality: the controller acts upon current nodes and neighbours, avoidirdjalrie estimates of
far nodes.

4. Generality the controller is domain model-independent: it can be used on arbitrangtistruc-
tures.

EXPERIMENTAL SETUP

To measure the quality of the controller and the student model, the trainincgapragas assessed in two
user studies. All the analyses performed are based on externaiveffess tests and input data from
participants of these two studies.

Study design and participants

Experimental data stem from 63 participants (45 females, 18 males) of twoing-large-scale studies
(Germany and Switzerland). Participants were divided into a training gilowp33, 66.6% females)
completing a 6-weeks training and a waiting group (n =306% females) starting with a 6-weeks rest
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Addition 1,1 TC ] Addition 2,1 M Addition 2,2 J Addition 2,2 TC
8+5=13 21+3=24 21+15=36 28+15=43

Fig.4. Skill sequences of three children in addition. Theation is consistent with Fig. 2. User 2 and 3 passed
all skills in the range, while user 1 did not pass this rangdiwithe training period. The length of the rectangles
indicates the number of samples.

period, followed by a 6-weeks training. The groups were matched diogpto age (training groupvl =
9.26 years (SD 0.94), waiting groum = 9.39 years (SD 1.09)(61) = -0.49,p = .63) and intelligence
(training group CFT/BUEGA-score: 101.09 (SD 11.38), waiting group lBEIEGA-score: 100.13 (SD
10.74),1(61) = 0.34,p = .73) (Cattell et al., 1997; Esser et al., 2008). All participants attended.the
5. grade of public elementary schools and were German-speaking. riutibal performance of the
participants was evaluated at the beginning of the study dfter 6 weekst) and after 12 weekgy).

The children exhibited difficulties in learning mathematics indicated by a belenage performance

in the standardized arithmetic tddRT (addition T-score: 34.14 (SD 6.71), subtraction T-score 33.76
(SD 7.36)) (Haffner et al., 2005). At the beginning of the stugy, there was no significant difference
in arithmetic performance between the training and waiting group (additi@1) = -0.25,p = .80,
subtractiont(61) = -1.30,p =.20). The participants were required to train with the program for a period
of six weeks with a frequency of five times per week, during session$ ahidutes. For the present
analyses, only children with at least 24 complete training sessions werdeaiclu

External instruments

Training effects were measured using paper-pencil and computed-besthematical performance tests.
On the one hand, arithmetic performance was assessed using the additsubamaction subtests of the
HRT (re-test reliability: addition; = .82, subtractiom;; = .86). In these subtests, children are provided
with a list of addition (subtraction) tasks ordered by difficulty. The goaheftest is to solve as many
tasks as possible within a time frame of 2 minutes. ThusHiR& measures speed. On the other hand,
arithmetic performance was also measured withABe(arithmetic test), which exists in a paper-pencil
and a computer-based version. In this test, children solve a series iibaddnd subtraction) tasks
ordered by difficulty. Tasks were presented serially in a time frame of 10tesnun contrast to the
HRT, the AC also contains more complex tasks in the number range from 0-100.
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Input data

Experimental data consisted of input logs recorded from 63 participatE@ntaining six weeks of
training (training groupt; — t9, waiting group:ts — t3). On average, each user completed 29.77 (SD
2.43, min 24, max 36) sessions. The total number of solved tasks was $3B4976, min 1011, max
2179), while the number of solved tasks per session corresponded/® 8D 7.86, min 37.63, max
75.1).

To facilitate the analysis of the log files, the concept of ‘key skills’ is intraalid<ey skills are defined

in terms of subject-dependent difficulty, they are the hardest skills fargheto pass. More formally,

Definition 1. A skill s 4 is akey skill for a userlU, thatiss4 € Ky, if the user went back to a precursor
skill sp at least once before passing.

From this follows that the set of key skillS;; may be different for each usér (and it typically is).
In the sequence in Fig. 4, usehas no key skills, while us& has one key skill (coloured in green) and
userl has several key skills.

RESULTS & DISCUSSION

The analyses performed on the input data and the external effect/emmasures assess the quality of
the training program and in particular the quality of the student model andotiteoier mechanism
according to different criteria:

1. Efficacy of training program: We show that the participants improved tbxecourse of the train-
ing. This improvement is demonstrated by an increased mathematical peréarwéhin the
system (SecSystem-internal improvement analysiy. Furthermore, we also include first pilot
results of external arithmetic tests (S&mining effects).

2. Assessment of controller design: We show that the introduced cangohanism significantly
speeds up learning (Secontroller design).

3. Adaptability: We show that the program rapidly adapts to the knowledgedéthe user (Sec€on-
troller adaptability ).

However, the analyses of the logfiles are not only useful to assesadlity @f the training program, but
also to understand properties of the users and the skills of the studenrt Medmnalyse the performance
of the users in the program as well as properties of skills (&eg.skills). Such analyses can lead to a
better understanding of the mathematical knowledge of the users.

Training effects

A repeated measures general linear model (GLM) analysis was coddocévaluate training effects
(t1—t2) as a within-subject factor and group (Training/Waiting) as a betwebjestfactor. Parametric t-
tests were used to calculate differences between measurement poirts-gaamnple t-test; —t, to—t3).
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Table 2 summarizes the means and standard deviations of the mathematicah@ec®measures for all
measurement points, including calculated statistical results. There wertwedn-group performance
differences prior to the intervention. The training induced a significantorgmnent in subtraction, while
no improvement was found after the waiting period (HRT interaction:001, AC interactionp < .001).
Children also improved significantly in addition, however no significant difiee between the training
and the waiting group was found (HRT interactigns .18, AC interactionp = .16). Surprisingly, also
the waiting group improved significantly in the HRT addition test, this effect caveler be attributed
to outliers (one child probably not understanding the test correctlyatd therefore solving only three
tasks within the two minutes). Removing the outlier leads to a significant interaptrO{8).

Table2
Mathematical performance of training and waiting group over the coofrske study: Mean (SD) test scores (number of
correctly solved tasks) fori, t2 andt¢s. Interaction between training and group (F-score) as well as diffesebetween
measurement points (t-score).

t ¢ t-score F-score 3 t-score
1 2 (tl — tz) (tl - tz) (t2 - t3)

HRT Add.
TG 15.64 (5.22) 18.36 (5.31) 5.20%* | o) - -
WG 16.53 (6.10) 18.23 (6.00) 3.08* ' 19.37 (5.74) 1.97
HRT Sub.
TG 12.06 (5.27) 16.15 (5.17) 836" Ll -
WG 14.00 (6.65) 14.63 (6.25) 0.86 ' 17.33 (6.04) 4.84%+
AC Add.
TG 68.58(25.82)  77.22(2473)  315% o - -
WG 67.83(29.79)  69.94 (27.83)  0.55 : 73.60(20.92) 1.41
AC Sub.
TG 50.91(26.12) ~ 63.13(26.98)  5.40%* | oo, - -
WG 53.54 (25.29)  53.21(27.19)  0.14 ' 65.38 (23.26)  4.22%%*

*p<.05,**p<.01,** p<.001

The improvement in subtraction is supported by additional evidence: Ticergage of training time
children spent with subtraction tasks. In fact, 62.5% (78.4% if consid&eggkills only) of arithmeti-
cal tasks consist of subtractions. As children had especially difficultisglitractions with ten crossings
(Sec.Key skills) the improvement might stem from a better understanding of subtracting withaa
from higher automation and thus lower working memory load. However, atiixin is also consid-
ered the main indicator for numerical understanding (Dehaene, 20bhxistently with this, improved
number line representation is directly measurable from the recorded infaut ldaut data used in the
analysis consists of all landing tasks (denoted as samples with indeked by each child. Each sam-
ple can be characterized by a variablewhich denotes the index of the sample, i.e. the normalized
measurement point of that samplg € [0, 1]), and a dependent variabje denoting the deviance from
the correct position. The analysis of the accuracy was performed asing-linear mixed effect model
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(NLME) (Pinheiro and Bates, 1995):
y; ~ Poisson(\;) with \; = e®0H0r@itui and 4; ~ N (0, 02) (3)

whereu; denotes the noise term. Fitting was performed using one group per usarti@e, children
achieved greater accuracy when giving the position of a number on aendmé (Fig. 5, top). The
intercept (coefficienty) was significant only for the number range 0-100, indicating that chilsirzned
at different accuracy levels in the number range 0-10. The significahé; in both number ranges
demonstrates the significant improvement in accuracy (Fig. 5, bottom).

30 : e 30
= 99 . ,:z 20 -_~
315 3 15
2 10}, 210
(=) : (]
5 5
0 : o L ek
0 02 04 06 08 1 0 02 04 06 08 1
Time [x] Time [x]
Number range Coefficient Estimate (SD) sig. 95% ci
0-10 bo -0.08 (0.06) 0.21 [-0.20 0.04]
b1 -0.97 (0.07) <le-4 [-1.11 -0.84]
0-100 bo 2.25(0.04) <le-4 [2.17 2.34]
b1 -0.54 (0.02) <le-4 [-0.57 -0.51]

Fig.5. Landing accuracy in the number range 0-10 (left) a0 (right) increases over time. The x-axis denotes
the normalized sample indices (Time[x]), while the y-axispthys the deviance from the correct position. Exact
coefficients of NLME along with standard deviation (in bratd) are plotted by respective significance (sig.) and
confidence intervals (ci).

The lines of points (at 10%, 20% and 30% in Fig. 5 (left)) arise from theraaifithe LANDING game
(Fig. 1(a)): The children need to indicate the position of a given numbstd®sring a falling cone with
the joystick. If nothing is done, the cone will always land at the position ofitleqin the number range
0-10), which leads to deviations of exactly 10% (if the given number was &),a20% (if the given
number was 3 or 7) or 30% (if the given number was 2 or 8).

The improvement measured in subtraction, number representation andgulalitipn is promising and
builds the basis for further extensions of the training environment anglat@tructure. One possible
future feature could be the incorporation of answer times into the tasksasses In the number range
from 0-10, fact retrieval is very important and can only be tested by gekitswer times into account.
Another addition could be to teach and assess the strategies used tonpmitbmetic operations.
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System-internal improvement analysis

To quantify improvement, the learning rate ovér was measured from all available samples (both if
the participant mastered them during training or not). One sampienotes exactly one task of one
user. The variablg; denotes the result (correct or wrong solution) of that task. Thexetbe analysis
includes all the tasks that the children solved at their respective key sKillsimprovement over time
I([tk, - tend]) Was computed using a NLME model employing one group per user and Key sk

1

y; ~ Binomial(1, p;) with p; = [T o Gotbrarm) and u; ~ N(0,0?) 4)

whereu; denotes the noise term. The sample indiceave been normalized( € [0, 1]).

The resulting model (Fig. 6) for all skills exhibits an estimated mean improveniéit. 8% (95% con-
fidence interval = [0.21 0.23]). Interestingly, subtraction exhibits a lowgrovement than addition.
Given the external training effects (Sdcaining effects), we would expect the opposite. However, chil-
dren have a lot more subtraction key skills than addition key skills (&eg skills). Therefore, despite
the average improvement per skill being higher for addition, the total impremgis still higher for sub-
traction. Furthermore, the higher number of key skills in subtraction leadsrt® pnactice in subtraction
skills. The conducted analysis measures the learning progress withinstieensgnd demonstrates that
children managed to improve their abilities in areas that were difficult for them.

Key skills

Although the key skills vary a lot over the children, some skills seem to be wiffior most of the
children and thus more likely to be key skills: Nine skills were key skills for moea thne third of
the children. Of these skKills, five were subtraction skills, four numberesprtation skills and one an
addition skill. Even more than 50% of the children had problems with the top tlesesiils: Indicating
the position of a number on a number line from 0-18@apic—Numberlinein Fig. 2) was difficult for
52% of the children. This result is in line with previous work, which obsemeficits of mental number
representation in children with DD (Kucian et al., 2006; Mussolin et al., 2Pti@e et al., 2007). More
than 50% of the children also had problems in subtraction in the number nammge$100, when a ten
crossing was involved (Subtraction 2,1 TC and Subtraction 2,2 TC in Figh23.result again confirms
the link between subtraction and spatial number representation (Del28drig,

The mathematical performance of the users, i.e. their mathematical knowkegéso be assessed
by their number of key skills. The normalized number of key skills is computedeaaumber of key
skills divided by the number of totally played skills. On average, the normafizeaber of key skills
per user was 0.27 (SD 0.14). This number can be interpreted as follawavé&age, the children had
difficulties with 27% of the skills that they played. When breaking this numbemdato the different
categories (number representation, addition and subtraction) it carebéhsg most problems arose in
subtraction. The normalized number of key skills was 0.26 (SD 0.19) in nurape¥sentation, 0.17 (SD
0.2) in addition and 0.37 (SD 0.15) in subtraction. The distribution over thealtred key skill numbers
in the different categories are displayed in Fig. 7. Interestingly, wergbdbat the normalized key skill
numbers in addition and number representation skills follow an exponentiabdtgn. The long tail of
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—_ —all
= 0.75} —add
@ sub
8 07 —— numrep
§ 0.65
8
s 06
2o~
]
£ 05
o
0.45
0 02 04 06 08 1
Time [X]
Category Coefficient Estimate (SD) sig. 95% ci
Al bo 0.06 (0.05) 0.22 [-0.03 0.14]
by 0.95 (0.04) <le-4  [0.871.03]
y bo -0.14 (0.09) 0.13 [-0.33 0.04]
Addition by 1.36 (0.11) <le-4  [1.141.59]

. bo 0.11 (0.08) 0.15 [-0.04 0.27]
Subtraction 0.79 (0.07) <1le-4  [0.660.93]
Number bo 0.08 (0.07) 0.26 [-0.06 0.21]
representation by 0.94 (0.06) <le-4 [0.82 1.06]

Fig.6. The percentage of correctly solved tasks (of keysjkiihcreases over the training period by 21.8% for all
skills (top). The normalized sample indices(Time[x]) are displayed on the x-axis, while the y-axis skaive
ratio of correct solutions. Improvements for addition (addibtraction (sub) and number representation (numrep)
are in the same range. Exact coefficients of NLME along witindard deviation (in brackets) are plotted by
respective significance (sig.) and confidence interva)gifcittom).

the distribution demonstrates that most children did not have difficulties in tagsgories. Rather, only
few children had strong difficulties in these categories. On the other hla@chormalized number of
key skills in subtraction is significantly higher than in the two other categoridicéted by a two-sided

t-test: p <.001 for both categories). The key skill analysis once more htsgssthe heterogeneity of
the children: The number of key skills as well as the key skill set itself vai&ut over the children.

Nevertheless, we can observe an accumulation in subtraction. Havingnpatelata available, a more
detailed analysis of key skills will be conducted in future work.
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Fig.7. Distribution over normalized number of key skills foumber representation skills (left), addition skills
(center) and subtraction skills (right).

Controller design

Further analysis demonstrates that the possibility to go back to easier (playeplayed) skills yields a
significant beneficial effect. The user not only immediately starts redukbiangate of mistakes, but also
learns faster. The log files recorded 973 individual cases of goicig l62n average, 20.6 cases (SD 12.1)
of going back are recorded per user. From Fig. 8 it can be seen éhatithber of going back cases varies
a lot among the users, i.e. the users exhibit very different levels of mativaianowledge. All cases in
which users play a certain skill (sampleg, go back to one or several easier skills, and finally pass them
to come back to the current skill (sampleg are incorporated in the analysis. The variabjeherefore
denotes all tasks before going back, whilg stands for the tasks solved after going back. Per each
casek the correct rate over time, ;. (1) is estimated separately fog, andx;. Fitting is performed

via logistic regression using bootstrap aggregation (Breiman, 1996) vatdmaing 8 = 200). The
direct improvement;, is the difference between the initial correct ratg.(at z, = 0) and the achieved
correct rater, ,(atz, = 1). The improvement in learning ratg is the difference in learning rate over
Cq,1 @ndcy 1. The distributions ovet! (mean ovel;,) and7 (mean over-;) are well approximated by a
normal distribution (Fig. 9 top) with means greater thaifhe rate of correct taskais increased by 0.14
while the learning rate is even increased by 0.36 after going back. Both measurements aregonitiv
average and a two-sided t-test indicates their statistically significant differieom 0 (Fig. 9 bottom).

To summarize, children reduce the rate of mistakes immediately after going eEkiidtrated by the
significantly positival) and exhibit a higher learning rate (demonstrated by the significantly pesjtiv

Controller adaptability

During the study, all participants started the training at the lowest (eadidsdf she net. The adaptation
time [to, tic, | is defined as the period between the stanf the training and the first time the user hits
one of his key skillgx,,. On average, the participants reached thejr after solving 148.3 tasks (SD
122.6, min 17, max 534). The number of complete sessions played up to thisygair2.1 (SD 1.97,
min 0.2, max 10.92). These results show that the model rapidly adjusts to thefdtatmvledge of the
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Fig.8. Number of going back times per user sorted in ascgnalider (left) and distribution over number of going
back cases (right). The equal distribution of going back ners demonstrates the heterogeneity of mathematical
knowledge of the children.
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Fig.9. Distributions over direct improvemedit(top left) and improvement in learning rate(top right). Statis-
tics for the improvement after going back (bottom): Mean iayement, significance of mean (sig.), standard
deviation (SD), and confidence intervals (ci).
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user. The fast adaptability is also confirmed by the fact that 52.4% of fltrer hit their first key skill
already in the number range 0-10, 38.1% of children in the number rad@® @nd only 9.5% of the
children in the number range 0-1000. The fast adaptation to the the chilolgl&dge ensures that each
child trains at the optimal difficulty level already after a few days of training.

CONCLUSION

This study presents a model of the cognitive processes of mathematieddbgieent and an automatic
control algorithm acting on it. The student model is represented by a dyr@ayge&sian network which
incorporates domain knowledge. The introduced control algorithm isidadimsed and enables the op-
timization of the learning process through targeted cognitive stimulation. Ploeteel data demonstrate
a significant increase in mathematical performance, measured by extffatdiveness tests as well as
from input logs. The large-scale input data analysis also proved tieeeaffy and adaptability of the stu-
dent model and the control algorithm. In particular, the possibility to go bae&daer skills significantly
(and rapidly) reduces the error rate and yields an overall increaaedrig rate. The student model has
the potential to be further refined by incorporating additional availableraxgntal data.
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