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Abstract—One of the most fundamental problems in image
processing and computer vision is the inherent ambiguity that
exists between texture edges and object boundaries in real-world
images and video. Despite this ambiguity, many applications in
computer vision and image processing often use image edge
strength with the assumption that these edges approximate object
depth boundaries. However, this assumption is often invalidated
by real world data, and this discrepancy is a significant limitation
in many of today’s image processing methods.

We address this issue by introducing a simple, low-level, patch-
consistency assumption that leverages the extra information
present in video data to resolve this ambiguity. By analyzing how
well patches can be modeled by simple transformations over time,
we can obtain a indication of which image edges correspond to
texture edges versus object boundaries.

Our approach is simple to implement and has the potential
to improve a wide range of image and video-based applications
by suppressing the detrimental effects of strong texture edges on
regularization terms. We validate our approach by presenting
results on a variety of scene types and directly incorporating
our augmented edge map into existing image segmentation and
optical flow applications, showing results that better correspond
to object boundaries.

I. INTRODUCTION

We introduce a simple method to distinguish texture edges
from object boundaries by analyzing patch-based changes over
time. Methods that benefit from our approach can be found in
all areas of image processing. Some examples are applications
that use object boundaries to propagate sparse information,
such as colorization, markup, and image editing, applications
that incorporate edge-based regularization, such as optical
flow, stereo vision, and image stitching, and applications that
segment objects in video, including object tracking, pedestrian
detection, and gesture recognition.

All of the above approaches are similar in that they rely on
image edges as a form of scene understanding. However, im-
age edges alone cannot distinguish between object boundaries
and texture edges, as often times the type of edge depends on
the context of the edge, rather than its appearance. Consider
a photograph of a room with multiple objects at different
depths. In this image, both texture and object boundaries exist.
However, a photograph of this photograph, can look exactly
identical to the original image, but in the second case all image
edges correspond to texture edges. Clearly a single image
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cannot tell us what the source of the image edges are, and
more information is needed in order to differentiate the two.

To overcome this inherent “photograph-ambiguity” in sin-
gle images, we present an approach that leverages extra
information available in video data. We create a restricted
definition of texture and object edges, and propose a simple
but effective metric to quantify edge type in terms of this
definition. Our method is based off of what we refer to as
the patch consistency assumption. This assumption states
that an edge is a texture edge if its appearance can be well
modeled over time by a set of basic 2D transformations
(translation, rotation and scale). Image edges that arise at
object boundaries on the other hand, cannot be as easily
modeled. The motivation for this assumption is that difficult
to model phenomena such as disocclusions, occlusions, and
different foreground/background motions all occur at object
boundaries. The patch consistency assumption is motivated
in part by how we as humans perceive object separation, and
has been known for a long time as the ‘common fate” Gestalt
principle [1], which states that a coherent object is one that
moves together.

We note that our assumption is a simplification of real
world object boundaries, as object boundaries can exist in
video footage without changing over time (e.g., a fixed camera
filming a static scene). But without additional sources of
information, stationary objects in video suffer from the same
“photograph ambiguity” as single images. However, as long
as these regions are spatially rare, we show that it is possible
to explicitly detect where our patch consistency assumption
fails (textureless and motionless regions), and then perform a
refinement step that propagates estimates from more confident
regions along image edges.

In practice, we compute object boundary probabilities by
first finding patch correspondences over time using a recent
fast nearest-neighbor search method called PatchMatch [2].
We then evaluate how well our patch consistency assumption
matches the change in content over time to quantify texture
edge likelihood. We apply our method to a variety of
scene types, and provide additional validation by incorporating
our output in existing image segmentation and optical-flow
applications.

In summary, the main contribution of our work is a simple
and novel assumption that we show can help differentiate
object boundaries from texture edges in a video sequence. Our
method is easy to implement, requires no additional sources
of data, and can directly be used in a large number of image-
processing algorithms.

The paper is laid out as follows. Section II describes



related work, Section III looks at more detail into the patch
consistency assumption and explains how we compute the
probability that an image edge corresponds to an object bound-
ary, Section IV provides example applications, and Section V
discusses limitations and directions for future work.

II. RELATED WORK

A. Edge Detection

Much effort has been spent in the last five decades on
the detection of edges in images, and it remains one of
the most fundamental image understanding tasks today. Early
algorithms focus on finding local maxima in the image first
derivative, such as the Prewitt [3] and Sobel operators, or zero-
crossings of the second derivative [4]. Despite being among
the oldest techniques in image processing, many of these
algorithms are still widely used today. These methods often
make the assumption that the strength of the image derivatives
correlates to how likely that edge corresponds to an object
boundary, which is often not the case.

To remedy this problem, alternative strategies have been
introduced, such as defining edges as borders between regions
with different repeated textures. These regions can be found
by convolving images with filter banks based on Gabor
filters [5]-[7], by extending the compass operator to filter
responses [8], or by looking at local descriptors of texture
patches directly [9]. These methods all solve a fundamentally
different problem, which is locating edges between texture-
texture regions, rather than finding object boundaries. As a
result, when such a separation is needed, these methods make
the implicit assumption that object boundaries are equivalent
to texture-texture edges. However, in natural images, object
boundaries can exist without such edges, and texture edges do
not necessitate object boundaries.

Machine learning has also been proposed as a mean to try
to differentiate edge types, for example using boosting [10].
This method derives features from multiscale pixel patches and
shows promising results, but is applicable only to scenes with
edges that share similar features to those used for training.

All of the above methods operate only on single images,
and therefore suffer from the “photograph-ambiguity”, which
we address using video information. Other methods try to
overcome this ambiguity by leveraging additional information,
such as structured light [11], or a modified camera with
physically offset light sources [12]. While both of these
methods yield high quality results, they require extra hardware
and modification of the original scene, which is not possible
in all use cases.

An obvious approach to find depth boundaries would be
simply to compute a depth map for the scene and then look for
local discontinuities. However, computing high quality depth
maps from a single video source is a highly under-constrained
problem, and no robust solutions exist today. Most successful
methods rely again on additional scene information, such as
multiple cameras [13], or active illumination [14]. Our method
requires no additional sources of information other than what
is available in a short temporal window around a frame.

B. Motion Estimation

We are not the first to propose motion as a cue to resolve
edges. Many methods have leveraged motion fields computed
by optical-flow methods to assist in segmenting objects. This
class of approaches is often known as motion segmenta-
tion [15], which attempt to group regions with similar flow
vectors, for example using normalized cuts [16].

If perfect motion fields were known, then indeed finding
object boundaries would be possible. However, in practice
finding motion fields requires solving optical flow. The prob-
lem with these approaches, is that optical flow methods
inherently suffer from a serious chicken-and-egg problem in
regards to isolating object boundaries. Because optical flow
(which models the motion of pixels from one frame to the
next), is explicitly undefined in areas that contain occlusions
and disocclusions, no meaningful correspondences can exist
at these locations. Therefore, methods must rely on regu-
larization to fill in information, and this regularization step
is most commonly driven by image edges [17], again under
the assumption that they match object boundaries. Therefore,
high-level cues, such as motion fields, already assumes some
knowledge of object borders in their computation, and in fact,
we show that our metric can be used to improve the quality
of a state-of-the-art optical flow method.

Unlike motion segmentation methods, we present a method
that can be computed from local, low-level information, and
does not suffer from the chicken-egg problem above. Instead,
we leverage a recent approach called PatchMatch [2], which
efficiently computes dense patch-based nearest-neighbors be-
tween two images. This approach, described in further detail
in Section III, has several advantages over optical flow; it
does not require a regularization step, which greatly simplifies
computation and reduces prediction errors at boundary regions,
and (as a direct result), is able to model additional degrees of
patch transformations, such as rotation and scale [18]. These
additional degrees of freedom are an important part of our
patch consistency assumption, and are currently not modeled
by motion fields, which describe only translation.

III. METHOD

In this work, we refer to “edge-maps” in the sense of
a real-value per pixel edge magnitude, rather than a binary
edge descriptor, however performing thresholding operators on
these edge maps is a straightforward extension.

A. Algorithm Overview

The goal of our method is to compute P, the per-pixel
likelihood that each pixel corresponds to an object boundary,
given an input video sequence I. A patch is specified by a
four-element vector ¢ that consists of an z,y position, scale
factor s, and rotation angle 6. The contents of a source patch
at frame j is written as I}. Our algorithm consists of two
main steps. The first step is to find, for every patch I, its
closest set of matches Ifk, forallke K={j—mn,...,j+n}
neighboring frames excluding j (Figure 1). Here, 2n is the
temporal window width, and by € R* is searched over the set
of possible patch transformations; shift (z,y), relative scale
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Fig. 1: We find best-match patch correspondences in a tempo-
ral window. Here we show possible matches for one patch I/
over a window of 5 frames.

Frame j

(s), and rotation (). As I fk is not necessarily rectangular in the
target image, we warp and re-sample it into the reference frame
defined by patch 4, such that direct pixelwise comparisons can
be made between I and Ifk. We use bilinear interpolation,
but found that the choice of interpolation function did not
have a significant impact on results. Furthermore, source
patches are always defined to have a fixed scale (s = 1),
and rotation (f = 0). Next, we determine how well the patch
transformation models the data by applying a difference metric
¢ on I} and the set of I} , Vk € K.

B. Patch Consistency Assumption

Our main assumption is that patches on object boundaries
cannot be modeled by simple patch transformations over
time, while texture edges can (within a short time-frame). In
Figure 2, we show an example demonstrating this assumption.
Two patches are shown from a frame of video, along with their
best matched patches in a temporal window. Below each row
is a visualization of patch consistency over time, computed
using ¢, which we define later Section III-D. This shows areas
with high consistency (blue), medium consistency (green) and
low consistency (red). Note that the first patch corresponds
to an object boundary and exhibits lower patch consistency,
while the second patch corresponds a texture edge and has
much higher patch consistency.

C. Finding Patch Correspondences

We use the Generalized PatchMatch approach to find corre-
spondences over frames [18]. We give a short description of
PatchMatch here, but refer the reader to the original work
for more details. The goal of the Generalized PatchMatch
method is to find the best match of every patch from a source
image to a target image. This can be defined by a function
fpatchmatch, such that fpatchmatch(lgy Ik) € R* is the four-element
vector that gives the position, scale, and rotation that define
the nearest neighbor patch 7, fk for a given patch I}, e.g.,

be = fouchmaen(I7,I%) VEke K iel’ (1

The brute force solution to compute fpachmach Would require
O(mM?|s||6]) running time, for images with m pixels, patches
of size M, and |s|,|0] are the cardinalities of the discretized
scale space and rotation space respectively. PatchMatch accel-
erates this computation using the following algorithm. First,

Fig. 2: Best-matched patches at object boundaries exhibit
different properties than at texture edges. The orange region
corresponds to a texture edge, which is better modeled over
time when compared to a patch at an object boundary (lime).

the nearest neighbor field is randomly initialized. Then, a
Propagation step takes advantage of spatial coherence in
images by sequentially updating every patch (top to bottom,
left to right) with the best offset vector of itself and the
offset vectors of patches immediately to the left and above
of it. Secondly, a Random Search step avoids local minima by
checking a number of random patch parameters to see if any
would provide better matching. These two steps are alternated
a fixed number of iterations (5 is suggested in the original
work).

D. Object Boundary Metric

We then define a metric ¢ that computes an object boundary
probability value p! for each patch as a function of these
matches: 4 ‘

pl=¢I,I},..) ke K )

In this paper, we will use P as a shorthand for all probabilities

p] assembled into an image. The goal of this metric is to
distinguish a set of patches that correspond to texture edges
from those that belong to object boundaries. As our patch
assumption states that patches should be similar if the content
corresponds to a texture edge, we define ¢ as a commonly
used patch difference metric that combines color and gradient
information [19]:

O ) =
e S =l ey -y
‘ |kEK

where V is the gradient operator. We choose this metric as it
has been shown to have good discriminative properties as well
as some degree of invariance to lighting changes due to the
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Fig. 3: The effect of patch size on P. Larger patch sizes exhibit
less noise, but lose edge resolution.

gradient term [19]. For all experiments shown here, we use a
value of a = .5, which gives roughly equal weighting to the
two terms. For empirical validation, we show results of P in
Figure 7 on a variety of datasets. These include scenes with a
fixed camera and moving objects, moving cameras and fixed
objects, and both moving cameras and objects.

We provide an analysis of different patch sizes in Fig-
ure 3. Large patches give more reliable measurements, but
lose detail, as all patches that overlap object boundaries will
validate our assumption to some degree. Similarly, while
larger temporal windows could in theory give more reliable
results, beyond a few frames the quality of matching degrades
significantly so as to introduce additional noise. In all results
shown here, we use a patch size of 15 x 15 pixels and a
temporal window of k = 2.

E. Refinement

We note that P becomes visibly fuzzy as a result of the
patch size. Furthermore, our patch-consistency assumption
can be invalidated when no motion has occurred. This can lead
to low P values in places with potentially strong image edges.
Therefore, in order to address both the fuzziness as well as
the limitations of our assumption, we propose an optimization-
based method to refine the initial object boundary probability
P and propagate information along image edges where our
patch-consistency assumption cannot be relied upon.

To accomplish this, we first define a confidence map C. We
know our patch-consistency assumption is invalidated when
there is no motion, or when patches have no texture, so we
can directly use the two terms to compute C' as follows,

Ci= & me \[i(z,y) — be(z, y)||, 7) + var(I}). (4)
keK

1 and by, are again four-element vectors defining a patch, and

i(z,y),br(x,y) refer to only the position components of 4

and by respectively. The norm of their difference gives us

the image-space motion between frames. var(I]) computes

the variance of the source patch. The constant 7 is used to

avoid biasing the confidence map to only the largest motions.

It should be chosen as small as possible such that some degree
of motion is still detectable by ¢, in all results we use a 7 = 3.

Our goal is to now use C' to compute a new object boundary
probability map P, in which low confidence regions can
“borrow” information from more confident neighbors, while
the result is refined to image edges. To do this, we use an
approach similar to image matting [20]. Let us consider images
to be vectors with length | = width x height, we can define
a quadratic energy term

Erefined = (P - p)TG(P - p) + )\pTLﬁ (5)

where G is a [ x [ matrix whose diagonal is C' and all
other entries are zero. To enforce coherence to the original
image edges, we use the Matting Laplacian [20], L. X is a
regularization parameter. The elements of L are derived from
the classic edge strength map S, computed as the magnitude
of the Sobel response of image I’ (Figure 4). The smoothness
term PT L P forces neighboring values in P to be similar only
if they are also similar in S. The confidence weighted data
term (P — P)TG(P— P) preserves the similarity of the refined
map P to the original P in regions where the confidence C'
is high. Combining these two terms means that an optimal P
will have values that are similar to the original estimates P,
but have been propagated along image edges in regions of
low confidence. The optimal refined probability map P can
be found by minimizing E,¢fined. AS Ercfinea 18 linear with
respect to P, we can perform this minimization by solving the
following system of equations in the form Az = b,

(L + A\GU)P = A\GP (6)

where P is our vector of unknown refined probabilities, and
U is a identity matrix the same size as L. In Figure 4, we
show some results from this refinement step.

IV. APPLICATIONS

Segmentation One class of applications whose performance
is often hindered by the confusion between texture and object
edges is image segmentation. Segmentation involves assigning
object class labels to pixels, and is sometimes known as image
labeling. It is often solved by minimizing energy in the form of
a pairwise MRF composed of color similarity (unary) and local
smoothness (pairwise) terms. Many methods exist to minimize
these pairwise MRFs, and some of the more common are
graph-theoretic approaches, such as normalized cuts [22], or
graph cuts [21].

We integrate the object boundary probability maps into an
example graph-cut segmentation approach due to its simplicity,
but we note that any number of more modern methods that
minimize unary and pairwise terms could be similarity aug-
mented. In this application, a labeling [ is found that assigns
each pixel p € R? in [/ a label [,. A unary constraint sets
the class labels for a sparse set of initial seeds, and a pairwise
constraint enforces labels to be similar between neighboring
pixels of similar color. Consider an image I, the pairwise term
can be defined as follows:

=2 >

pel neN(p)

Je —lHp=Inll (7

paw’wzse
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Fig. 4: By refining P, we obtain P. This refinement is driven by the confidence map C' and the original image edges S. It
has the effect of aligning P to image edges, while filling in gaps that arise due to textureless or static regions (inset). In both
examples, high P values are correlated to image edges, while the texture edges (the distant mountains in both left and right

images, and cactus lines in the right image) are suppressed.

Image and Seed Points

Standard Graph Cut Segmentation

Graph Cut Segmentation with P

Fig. 5: Graph cut image segmentation [21] from seed points with and without our object boundary probability map. Using P
with the same seed points, we achieve a better object segmentation, more successfully isolating the body of the fish (above),

and the front facing mountain range (below).

where N (i) are the four pixel neighbors of p, and p(,,1,)
is a comparison function that is O when [, = [,, and 1
otherwise. This can be understood as an error that occurs when
neighboring pixels are assigned a different label, and that is
inversely related to the color similarity the two pixels. The
optimal labeling ! is computed by constructing a graph, and
solving a max-flow min-cut problem.

In order to integrate P, modify the pairwise term
(Epairwise) 10 inglude a notion of edge type, by weighting
the energy with P.

Epai’r‘wise’ = Z (1 — Pp) Z p(lp7 ln)e_HIP_InH (8)

pel neN(p)

This has the effect of increasing the cost of assigning differ-
ence labels to neighbors that are not at object edges, while
reducing the costs of assigning different labels to neighbors
that are at texture edges.

Figure 5 shows some results using our method. We manually
place some seed points as hard constraints (pictured), and
perform the segmentation with and without P. We can see
that because of the strong texture edges, a naive segmentation
method has a difficult time locating object boundaries. Using
our approach, we can suppress these edges without removing
real object depth boundaries.

Optical Flow As further validation, we embed P into
an existing state-of-the-art optical flow approach for which



Matlab code was publicly available [17]. This work computes
optical flow by minimizing the standard data-plus-smoothness
term

Eflow = Eaata + AEsmooth- &)

It proposes a non-local smoothness weighting where A =
W € R? is a spatially varying weight for each pixel. We
modify this method by directly including our modified edge
map P into the weight map W, producing W, e.g.

W, = P,W, Vp (10)

This has the effect of increasing the weight of the edge-
based regularization term where color differences correspond
to texture edges, forcing the flow to be more similar, while de-
creasing it at object boundaries, allowing the flow to change.

We show the results using a color-coded optical flow visu-
alization in Figure 6. Using P, we can see that lowering the
regularization effect of texture edges relative to object edges
reduces noise and improves coherence to object boundaries.
For example, optical flow vectors of the frog blur into the
background in the original implementation, while the shape
is better maintained using our method. Additionally, texture
edges inside the fish confuse the regularization, causing incor-
rect motion artifacts, while using our edges, the motion of the
whole object is more consistent.

V. CONCLUSION

We have introduced a simple, easy to implement patch-
consistency assumption that allows for texture/object boundary
separation. In addition, we proposed an optimization based
refinement step, and showed how our approach can trivially
improve a sample optical-flow application.

The running time of our method is largely dependent on
the speed of PatchMatch, as computing the difference metric
is trivial. Using our non-optimized Matlab implementation, on
a 2.6ghz 4-core Intel laptop, computing P for a 1-Megapixel
image with a temporal window of 5 frames requires roughly
25 seconds , however as newer methods for computing nearest
neighbor fields have been shown to operate up to 30 times
faster than PatchMatch [23], a much faster version should be
theoretically possible. The refinement step requires solving a
large linear system of equations, which on the same system
requires roughly an additional 30 seconds.

Our method is not without limitations. While we make
use of the available information in video sequences, often
times this cannot be sufficient to truly determine all object
boundaries. For example, when no motion exists, we again
have the photograph-ambiguity, in that edges cannot be dis-
tinguished from video alone. In addition, we require there
to be some degree of visually distinguishing features in the
scene for differences in motion and occlusions to be detected.
For example, objects edges that move over solid colored
backgrounds cannot be used to reliably compute texture edges
probability.

To overcome these issues, we presented a confidence-
based refinement step, but note that better treatment of these
limitations is area for future research. One possible area could
be to more extensively use the available video information.

Our method operates on a sliding temporal window, producing
P independently per-frame. A method that jointly estimates
object boundary probabilities over multiple frames would have
much more information to work with, but at the cost of
computational complexity.

Finally, we note that the performance of our algorithm
is strongly dependent on the quality of output from Patch-
Match. Fortunately, this approach has shown to be remarkably
robust in a number of different applications. Furthermore,
PatchMatch is an actively developing area, and since our
implementation, more recent versions have been proposed that
generate faster and more reliable matches [24], and account
for additional geometric and color transformations [25]. These
properties should greatly help with tracking patches over time,
and future work includes analyzing the performance gains
from these extensions.

In summary, we have presented a very simple method that
is capable of distinguishing object boundaries edges from
texture edges in video. We believe that this simple idea has
the potential to help a wide range of applications. It is simple
to implement, and performs well on a variety of datasets.
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Fig. 7: Comparisons between Sobel edge magnitudes and our object boundary probabilities P. Edge maps are color-mapped
for visibility, but may lose detail in the printing process. We recommend readers view images on-screen and zoomed-in.



