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Figure 1: We present a system to acquire the shape and texture of an eye at very high resolution. This figure shows one of the input images,
the reconstructed eyeball and iris geometry, and a final render from a novel viewpoint under different illumination (left to right).

Abstract
Even though the human eye is one of the central features of indi-
vidual appearance, its shape has so far been mostly approximated in
our community with gross simplifications. In this paper we demon-
strate that there is a lot of individuality to every eye, a fact that com-
mon practices for 3D eye generation do not consider. To faithfully
reproduce all the intricacies of the human eye we propose a novel
capture system that is capable of accurately reconstructing all the
visible parts of the eye: the white sclera, the transparent cornea and
the non-rigidly deforming colored iris. These components exhibit
very different appearance properties and thus we propose a hybrid
reconstruction method that addresses them individually, resulting
in a complete model of both spatio-temporal shape and texture at
an unprecedented level of detail, enabling the creation of more be-
lievable digital humans. Finally, we believe that the findings of this
paper will alter our community’s current assumptions regarding hu-
man eyes, and our work has the potential to significantly impact the
way that eyes will be modelled in the future.
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1 Introduction
Creating photo-realistic digital humans is a long-standing grand
challenge in computer graphics. One of the cornerstones of produc-
ing digital doubles is capturing an actor’s face. Over the past decade
this area has been a topic of intense research, and many different
approaches have been proposed [Ma et al. 2007; Alexander et al.
2010; Bradley et al. 2010; Beeler et al. 2010; Ghosh et al. 2011;
Beeler et al. 2011; Graham et al. 2013; Garrido et al. 2013], most
of which focus on reconstructing the skin surface and its appear-
ance in increasing levels of detail. Only recently have researchers

started to consider other facial features, such as facial hair [Beeler
et al. 2012]. The eye, arguably the most important facial feature,
has so far only received very little attention, especially its shape.

The visible portion of the eye is comprised of the white sclera, the
transparent cornea, and the colored iris, as shown in Figure 2a. In
computer graphics, the shape of the eye is generally approximated
by two spheres, a big one for the sclera and a smaller one for the
cornea [Lefohn et al. 2003; Ruhland et al. 2014]. The iris is often
thought of as a planar disc, or as a cone to fake the refraction of
the cornea. The constriction and dilation of the pupil is typically
modelled as planar, radial motion and the out-of-plane deformation
of the iris is generally neglected [Ruhland et al. 2014]. Figure 2b
shows such a generic CG eye.
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Figure 2: a) Shows a schematic of the human eye denoting the
components referred to in this paper. b) The shape of a generic CG
eye represents only a low order approximation of an individual eye,
while the proposed method reconstructs all its intricacies (c).

In this paper, we argue that generic eye models typically used in
computer graphics are insufficient for capturing the individual iden-
tity of a digital human. While a simple modeled or simulated eye
may be sufficient for background characters, current industry prac-
tices spend significant effort to manually create eyes of hero char-
acters. Our reconstruction method can greatly reduce the time spent
and help increase the realism of the eye. As an example, Figure 2c
presents an eye that is reconstructed by the method proposed in this
paper. Our reconstruction specifically captures the overall shape
and spatial surface variation of the sclera including a detailed vein
texture, the complex shape, texture and deformation of the iris, and
even properties of the transparent cornea including the exact cur-
vature along with the refractive index at the boundary. This exam-
ple demonstrates that the aforementioned assumptions only roughly
approximate the true physiology of the eye, and thus cannot repre-
sent actor-specific details that can greatly increase the realism of a
digital double. Furthermore, the eyeball exhibits strong asymme-
try, contains microscopic surface details and imperfections such as

http://doi.acm.org/10.1145/2661229.2661285
http://portal.acm.org/ft_gateway.cfm?id=2661285&type=pdf
http://graphics.ethz.ch/publications/papers/paperPas14a.php
http://graphics.ethz.ch/Downloads/Publications/PaperVideos/2014/Pas14a.mp4


Pingueculas1 - all of which are very person-specific. The micro-
geometry of the iris is as unique to every person as a fingerprint,
and its position and deformation depends on the accommodation
of the underlying lens. These are just a few examples of eye de-
tails that cannot be captured with traditional models. Through the
results of this paper we will show several more examples, in par-
ticular when it comes to the dynamic deformation of the iris during
pupillary response2.

To overcome the limitations of generic eye models and accurately
reproduce the intricacies of a human eye, we argue that eyes should
be captured and reconstructed from images of real actors, analo-
gous to the established practice of skin reconstruction through fa-
cial scanning. The eye, however, is more complex than skin, which
is often assumed to be a diffuse Lambertian surface in most recon-
struction methods. The human eye is a heterogeneous compound
of opaque and transparent surfaces with a continuous transition be-
tween the two, and even surfaces that are visually distorted due
to refraction. This complexity makes capturing an eye very chal-
lenging, requiring a novel algorithm that combines several comple-
mentary techniques for image-based reconstruction. In this work,
we propose the first system capable of reconstructing the spatio-
temporal shape of all visible parts of the eye; the sclera, the cornea,
and the iris, representing a large step forward in realistic eye mod-
eling. Our approach not only allows us to create more realistic
digital humans for visual effects and computer games by scanning
actors, but it also provides the ability to capture the accurate spatio-
temporal shape of an eye in-vivo.

2 Related Work
According to a recent state-of-the-art report on eyes [Ruhland et al.
2014], there is not a single paper that is concerned with accurately
reconstructing the shape of the visible components of the eye. Most
research so far has focused solely on acquiring the iris, the most
prominent part of an eye, typically only considering the color vari-
ation and neglecting its shape. An exception is the seminal work by
François et al. [2009], which proposes to estimate the shape based
on the color variation. Guided by the physiology of the iris, they
develop a bright-is-deep model to hallucinate the microscopic de-
tails. While impressive and simple, the results are not physically
correct and they have to manually remove spots from the iris, since
these do not conform with their model. Lam et al. [2006] propose a
biophysically-based light transport model to simulate the light scat-
tering and absorption processes occurring within the iridal tissues
for image synthesis applications. Sagar et al. [1994] model a com-
plete eye including the surrounding face for use in a surgical sim-
ulator. However, the model is not based on captured data and only
approximates the shape of a real eye.

In contrast, we will show that our proposed technique faithfully
captures the intricacies specific to individual eyes with greater de-
tail and fidelity (see Section 8).

Other authors have looked into the motion patterns of the iris, such
as dilation or hippus3 [Hachol et al. 2007]. Pamplona and col-
leagues study the deformation of the iris when the pupil dilates in
2D [Pamplona et al. 2009]. They manually annotate a sparse set of
features on a sequence of images taken while the pupil dilates. The
recovered tracks show that the individual structures present in the
iris prevent it from dilating purely radially on linear trajectories.
Our paper tracks the deformation of the iris densely since we do
not require manual annotation and our measurements confirm these
findings. More importantly, we capture the full three-dimensional

1A degeneration of the fibers of the sclera resulting in a small bump.
2Varying pupil size via relaxation/contraction of the iris dilator muscle.
3A rhythmic but irregular continuous change of pupil dilation.

deformation of the iris, which conveys the detailed shape changes
during pupil dilation. In one of our proposed applications we com-
plement our deformation model with the temporal model proposed
by Pamplona et al. [2009].

In the medical community the situation is different. There, accurate
eye measurements are fundamental, and thus several studies exist.
These either analyze the eye ex-vivo [Eagle Jr 1988] or employ ded-
icated devices such as MRI to acquire the eye shape [Atchison et al.
2004] and slit lamps or keratography for the cornea [Vivino et al.
1993]. Optical coherence tomography (OCT) [Huang et al. 1991],
in ophthalmology mostly employed to image the retina, can also be
used to acquire the shape of cornea and iris at high accuracy. An
overview of the current corneal assessment methods can be found
in recent surveys [Rio-Cristobal and Martin 2014; Piñero 2013].

Such devices however are not readily available and the data they
produce is oftentimes less suited for graphics applications. We
therefore chose to construct our own setup using commodity hard-
ware and employ passive and active photogrammetry methods for
the reconstruction. To reconstruct the shape of the sclera we employ
the passive multi-view stereo reconstruction method from Beeler et
al. [2010], but any other multi-view reconstruction method could be
used as well. The cornea on the other hand is reconstructed using
an active approach since it is transparent. Following the notation
of Ihrke et al. [2008] the proposed method is a hybrid ’shape-from-
specularity’ and ’shape-from-distortion’ technique. This method
reconstructs the corneal shape using reflection constraints from a
sparse set of LEDs combined with dense refraction constraints from
the iris acquired from several viewpoints. Using only a sparse set of
lights instead of a dense illumination pattern such as employed by
Halstead et al. [1996] has the advantage that the underlying iris can
contribute to the optimization in the form of refraction constraints,
which allows us to also estimate the index of refraction and recon-
struct the shape of the iris from the same data.

In summary, while there has been a substantial amount of research
regarding the reconstruction of shape of various materials [Seitz
et al. 2006; Ihrke et al. 2008; Hernández et al. 2008], none of these
methods seem particularly suited to reconstruct the heterogeneous
combination of materials present in the eye. As the individual com-
ponents of the eye are all coupled, they require a unified reconstruc-
tion framework, which is what we propose in this paper.

3 Method Overview
The complexity of human eyes dictates a novel approach for cap-
ture and accurate reconstruction. We must pay particular attention
to the appearance properties of the different components of the eye,
and design different strategies for reconstructing each component.
While it is possible to assume that the sclera is diffuse and Lam-
bertian (such as often assumed for skin), the cornea is completely
transparent, and the iris is viewed under unknown distortion due
to refraction. Furthermore, there is a coupling of the eye compo-
nents, for example the corneal shape should transition smoothly
to the sclera, and the perceived iris position depends on both the
corneal shape as well as the exact index of refraction (both of which
do vary from person to person).

The above observations lead to a progressive algorithm for eye re-
construction. We start by recovering the sclera shape, followed by
the cornea, and finally the iris. Each stage of the reconstruction re-
quires a different approach, relying on constraints from the previous
stages but tuned to the appearance properties at hand. The various
reconstruction methods also require different (but complementary)
capture data, which we acquire through a novel hardware setup of
cameras, flashes and LED lights.



Figure 3: This figure shows an overview of the system. First, sev-
eral modalities of data are acquired (Section 4). From these plus
a generic eye proxy, the system reconstructs the individual compo-
nents of the eye, the sclera (Section 5), the cornea (Section 6), and
the iris (Section 7) and combines them into a complete eye model.

To describe our method in detail, we organize the paper as illus-
trated in Figure 3. Section 4 explains the data acquisition phase
including the capture hardware. Section 5 discusses our passive
multi-view, multi-pose reconstruction method for obtaining the
sclera. Given the approximate sclera shape, we design a photomet-
ric approach for computing the corneal shape given a set of known
LED lights in the scene and multiple views of the refracted iris (Sec-
tion 6). The iris itself is then reconstructed using a novel multi-view
stereo approach that traces light paths through the corneal inter-
face (Section 7). Irises are reconstructed for a sequence of different
pupil dilations and we recover a deformable model for iris anima-
tion, parameterized by pupil radius. Our results demonstrate that
each individual eye is unique in many ways, and that our recon-
struction algorithm is able to capture the main characteristics re-
quired for rendering digital doubles (Section 8).

4 Data Acquisition
The first challenge in eye reconstruction is obtaining high-quality
imagery of the eye. Human eyes are small, mostly occluded by the
face, and have complex appearance properties. Additionally, it is
difficult for a subject to keep their eye position fixed for extended
periods of time. All of this makes capture challenging, and for these
reasons we have designed a novel acquisition setup, and we image
the eye with variation in gaze, focus and pupil dilation.

4.1 Capture Setup
Our capture setup consists of multiple cameras, a modified flash for
primary illumination, and a variety of colored LEDs that will reflect
off the cornea. To help the subject remain still during acquisition,
we arrange the setup such that they can lie on the floor with their
head in a headrest, situated under the camera array (Figure 4).

To get the best coverage in the space available, we place six cam-
eras (Canon 650D) in a 2 by 3 configuration, with 100mm macro
lenses focused on the iris. The lens is stepped down to f11 and the
camera is set to ISO100. The exposure is set to 1 second since we
capture in a dark room and the flash provides the primary illumina-
tion. The main flash light consist of three elements: a conventional
flash (Canon 600EX-RT), a cardboard aperture mask and a lens.
This assembly allows us to intensify and control the shape of the
light so that reflections of the face and the eyelashes can be pre-
vented as much as possible. We use 9 RGB LEDs and arrange them
in a 3x3 pattern, ensuring that similar colors are not adjacent in or-
der to maximize our ability to uniquely detect their reflections on
the cornea. The pupil dilation is controlled with a high-power LED
with adjustable brightness. We place this LED close to the eye that
is not being captured. Since the pupil dilation of both eyes is linked
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Figure 4: Overview of the capture setup consisting of a camera
array (1), a focused flash light (2), two high-power white LEDs (3)
used to control the pupil dilation, and color LEDs (4) that produce
highlights on the cornea. The subject is positioned in a headrest
(5). The studio lamps (6) are used during camera calibration.

we can control the dilation of the captured eye indirectly, avoiding
an extra specular highlight on the captured eye. In order to measure
the eye focusing at different depths, a focus pole with specifically
marked distances is placed in front of the subject. Finally, addi-
tional studio lamps are used during camera calibration.

4.2 Calibration

Cameras are calibrated using a checkerboard of CALTag mark-
ers [Atcheson et al. 2010], which is acquired in approximately 15
positions throughout the capture volume. We calibrate the positions
of the LEDs by imaging a mirrored sphere, which is also placed at
several locations in the scene, close to where the eyeball is during
acquisition. The highlights of the LEDs on the sphere are detected
in each image by first applying a Difference-of-Gaussian filter fol-
lowed by a non-maximum suppression operator, resulting in single
pixels marking the positions of the highlights. The detected high-
light positions from a specific LED in the different cameras form
rays that should all intersect at the 3D position of that LED after
reflection on the sphere with known radius (15mm). Thus, we can
formulate a nonlinear optimization problem where the residuals are
the distances between the reflected rays and the position estimates
of the LEDs. We solve for the unknown LED and sphere positions
with the Levenberg-Marquardt algorithm.

4.3 Image Acquisition

We wish to reconstruct as much of the visible eye as possible, so
the subject is asked to open their eyes very wide. Even then, much
of the sclera is occluded in any single view, so we acquire a series
of images that contain a variety of eye poses, covering the possible
gaze directions. Specifically we used 11 poses: straight, left, left-
up, up, right-up, right, right-down, down, left-down, far-left, and
far-right. The straight pose will be used as reference pose, as it
neighbors all other poses except far-left and far-right.

We then acquire a second series of images, this time varying the
pupil dilation. The intricate geometry of the iris deforms non-
rigidly as the iris dilator muscle contracts and expands to open and
close the pupil. The dilation is very person-specific, so we explic-
itly capture different amounts of dilation for each actor by gradu-
ally increasing the brightness of the high-power LED. In practice,
we found that a series of 10 images was sufficient to capture the iris
deformation parametrized by pupil dilation.

The acquisition of a complete data set takes approximately 5 min-
utes for positioning the hardware, 10 minutes for image acquisition,



and 5 minutes for calibration, during which time the subject lies
comfortably on a cushion placed on the floor.

4.4 Initial Reconstruction

To initialize our eye capture method, we pre-compute partial recon-
structions for each eye gaze using the facial scanning technique of
Beeler et al. [2010]. Although this reconstruction method is de-
signed for skin, the sclera region of the eye is similarly diffuse, and
so partial sclera geometry is obtainable. These per-gaze reconstruc-
tions will be used in later stages of the pipeline. Additionally, the
surrounding facial geometry that is visible will be used for provid-
ing context when rendering the eye in Section 8.

5 Sclera

Reconstructing the sclera is challenging because large parts are oc-
cluded by the eyelids and the eye socket at any given time. As in-
dicated previously, the problem can be alleviated by acquiring the
eye under multiple poses. In this section we explain our approach to
register the different poses into a common frame and integrate the
partial scans into a complete model of the eyeball. The individual
steps are outlined in Figure 5.
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Figure 5: The sclera reconstruction operates in both image and
mesh domains. The input images and meshes are segmented (Sec-
tions 5.1 and 5.2). The partial scans from several eye poses are reg-
istered (Section 5.3) and combined into a single model of the sclera
using a generic proxy (Section 5.4). A high-resolution texture of the
sclera is acquired and extended via texture synthesis (Section 5.5).

5.1 Image Segmentation

As indicated in Section 3, the individual components of the eye re-
quire dedicated treatment, and thus the first step is to segment the
input images to identify skin, sclera, iris, and pupil regions. We ac-
quire approximately 140 images for a single eye dataset, consider-
ing all the poses, pupil dilations and multiple cameras, which would
make manual segmentation tedious. Therefore, a semi-supervised
method is proposed to automate the process. All images are cap-
tured under similar conditions, and thus the appearance of the indi-
vidual classes can be expected to remain similar. We therefore em-
ploy a nearest-neighbor classification. We manually segment one
of the images into skin, sclera, iris and pupil regions (Figure 6a).
These serve as examples, from which the algorithm labels the pix-
els of the other images automatically by assigning the label of the
most similar example pixel. Similarity is computed in a lifted 21 di-
mensional feature space of 15 color and 6 Haralick texture features
[Haralick 1979], and has proven to provide sufficiently accurate and
robust results. This classification is fast since every pixel is treated
independently. We obtain high quality classification by employing
a post-processing step that uses the following topological rules:

• The iris is the largest connected component of iris pixels.

• There is only a single pupil and the pupil is inside the iris.

• The sclera part(s) are directly adjacent to the iris.

Figure 6b shows the final classification results for a subset of im-
ages, based on the manually annotated exemplar shown in (a).

Figure 6: Pupil, iris, sclera, and skin classification with manual
labels (a) and examples of automatically labeled images (b).

5.2 Mesh Segmentation

Given the image-based classification, we wish to extract the geom-
etry of the sclera from the initial mesh reconstructions from Sec-
tion 4.4. While the geometry is mostly accurate, the interface to the
iris and skin may contain artifacts or exhibit over-smoothing, both
of which are unwanted properties that we remove as follows.

While a single sphere only poorly approximates the shape of the
eyeball globally (refer to Figure 12 in the results), locally the sur-
face of the sclera may be approximated sufficiently well. We thus
over-segment the sclera mesh into clusters of about 50mm2 using
k-means and fit a sphere with a 12.5mm radius (radius of the aver-
age eye) to each cluster. We then prune vertices that do not conform
with the estimated spheres, either in that they are too far off surface
or their normal deviates strongly from the normal of the sphere. We
found empirically that a distance threshold of 0.3mm and normal
threshold of 10 degrees provide good results in practice and we use
these values for all examples in this paper. We iterate these steps
of clustering, sphere fitting, and pruning until convergence, which
is typically reached in less than 5 iterations. The result is a set of
partial sclera meshes, one for each captured gaze direction.

5.3 Pose Registration

The poses are captured with different gaze directions and slightly
different head positions, since it is difficult for the subject to remain
perfectly still, even in the custom acquisition setup. To combine
the partial sclera meshes into a single model, we must recover their
rigid transformation with respect to the reference pose. ICP [Besl
and McKay 1992] or other mesh-based alignment methods perform
poorly due to the lack of mid-frequency geometric detail of the
sclera. Feature-based methods like SIFT, FAST, etc. fail to ex-
tract reliable feature correspondences because the image consists
mainly of edge-like structures instead of point-like or corner-like
structures required by the aforementioned algorithms. Instead, we
rely on optical flow [Brox et al. 2004] to compute dense pairwise
correspondences.

Optical flow is an image based technique and typically only reliable
on small displacements. We therefore align the poses first using the
gaze direction and then parameterize the individual meshes jointly
to a uv-plane. The correspondences provided by the flow are then
employed to compute the rigid transformations of the individual
meshes with respect to the reference pose. These steps are iterated,
and convergence is typically reached in 4-5 iterations. In the fol-
lowing we will explain the individual steps.



Initial Alignment: The gaze direction is estimated for every pose
using the segmented pupil. Since the head does not remain still
during acquisition, the pose transformations are estimated by fitting
a sphere to the reference mesh and aligning all other meshes so that
their gaze directions match.

Joint Parameterization: The aligned meshes are parameterized
to a common uv-space using spherical coordinates. Given the uv-
parameterization, we compute textures for the individual poses by
projecting them onto the image of the camera that is closest to the
line of sight of the original pose. This naive texturing approach is
sufficient for pose registration, and reduces view-dependent effects
that could adversely impact the matching.

Correspondence Matching: We compute optical flow [Brox
et al. 2004] of the individual sclera textures using the blue chan-
nel only, since it offers the highest contrast between the veins and
the white of the sclera. The resulting flow field is sub-sampled to
extract 3D correspondence constraints between any two neighbor-
ing sclera meshes. We only extract constraints which are both well
localized and well matched. Matching quality is assessed using the
normalized cross-correlation (NCC) within a k × k patch. Local-
ization is directly related to the spatial frequency content present
within this patch, quantified by the standard deviation (SD) of the
intensity values. We set k = 21 pixels, NCC > 0, and SD < 0.015
in all our examples.

Optimization: The rigid transformations of all the poses are
jointly optimized with a Levenberg-Marquardt optimizer so that the
weighted squared distances between the correspondences are min-
imized. The weights reflect the local rigidity of the detected cor-
respondences and are computed from the Euclidean residuals that
remain when aligning a correspondence plus its 5 neighbors rigidly.
The optimization is followed by a single ICP iteration to minimize
the perpendicular distances between all the meshes.

5.4 Sclera Merging

After registering all partial scans of the sclera, they are combined
into a single model of the eyeball. A generic eyeball proxy mesh,
sculpted by an artist, is fit to the aligned meshes and the partial
scans are merged into a single mesh, which is then combined with
the proxy to complete the missing back of the eyeball.

Proxy Fitting: Due to the anatomy of the face, less of the sclera is
recovered in the vertical direction and as a result the vertical shape
is less constrained. We thus fit the proxy in a two step optimization.
In the first step we optimize for uniform and in the second step for
horizontal scaling only. In both steps we optimize for translation
and rotation of the eyeball while keeping the rotation around the
optical axis fixed.

Sclera Merging: The proxy geometry prescribes the topology of
the eyeball. For every vertex of the proxy, a ray is cast along its
normal and intersected with all sclera meshes. The weighted aver-
age position of all intersections along this ray is considered to be
the target position for the vertex and the standard deviation of the
intersections will serve as a confidence measure. The weights are a
function of the distance of the intersection to the border of the mesh
patch and provide continuity in the contributions.

Eyeball Merging: The previous step only deforms the proxy
where scan data is available. To ensure a smooth eyeball, we prop-
agate the deformation to the back of the eyeball using a Laplacian
deformation framework [Sorkine et al. 2004]. The target vertex po-
sitions and confidences found in the previous step are included as
weighted soft-constraints. The result is a single eyeball mesh that

fits the captured sclera regions including the fine scale details and
surface variation, and also smoothly completes the back of the eye.

5.5 Sclera Texturing
As a final step, we compute a color for each point on the recon-
structed sclera surface by following traditional texture mapping ap-
proaches that project the 3D object onto multiple camera images.
In our case, we must consider all images for all eye poses and use
the computed sclera segmentation to identify occlusion. One ap-
proach is to naively choose the most front-facing viewpoint for each
surface point, however this leads to visible seams when switching
between views. Seams can be avoided by averaging over all views,
but this then leads to texture blurring. An alternative is to solve the
Poisson equation to combine patches from different views while
enforcing the gradient between patches to be zero [Bradley et al.
2010], but this can lead to strong artifacts when neighboring pixels
at the seam have high gradients - a situation that often occurs in
our case due to the high contrast of a red blood vessel and white
sclera. Our solution is to separate the high and low frequency con-
tent of the images. We then apply the Poisson patch combination
approach only for the low frequency information, which is guaran-
teed to have low gradients. We use the naive best-view approach
for the high frequencies, where seams are less noticeable because
most seams come from shading differences and the shading on a
smooth eye is low-frequency by nature. After texture mapping, the
frequencies are recombined. Figure 7b shows the computed texture
map for the eye in 7a.

a) b) c) d)
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Figure 7: The sclera is textured from multiple views of multiple
different eye poses. The resulting texture map (b) for a given eye
(a) contains all the visible parts of the sclera. We further complete
the texture map through texture synthesis (c). Our textures can have
very high resolution details (d-h).

Our texturing approach will compute a color for each point that
was seen by at least one camera, but the occluded points will re-
main colorless. Depending on the intended application of the eye
reconstruction, it is possible that we may require texture at addi-
tional regions of the sclera, for example if an artist poses the eye
into an extreme gaze direction that reveals part of the sclera that
was never observed during capture. For this reason, we syntheti-
cally complete the sclera texture, using texture synthesis [Efros and
Leung 1999]. In our setting, we wish to ensure consistency of blood
vessels, which should naturally continue from the iris towards the
back of the eye. We accomplish this by performing synthesis in
Polar coordinates, where most veins traverse consistently in a ver-
tical direction, and we seed the synthesis with a few vertical vein
samples. Figure 8 demonstrates the rotated synthesis, which we
perform only on the high frequencies in order to avoid synthesized
shading artifacts. Corresponding low-frequency content is created
by smooth extrapolation of the computed low-frequency texture.

Finally, we can also synthesize missing surface details in the back
of the eye. We use the same texture synthesis approach, but in-
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Figure 8: Texture synthesis is performed on the high frequency in-
formation in order to complete the texture. A captured texture (a)
is rotated to Polar coordinates (b) and synthesis is performed in a
way that preserves vein orientation (c). The final texture is rotated
back to Cartesian coordinates (d).

stead we operate on a displacement map, which is computed as
the difference between the original and a smoothed version of the
reconstructed eyeball. The final result is a complete eyeball with
continuous texture and displacement at all points. We show a com-
plete texture and zoom region in Figure 7 (c-d), and highlight a few
zoom regions of different eye textures in Figure 7 (e-h).

6 Cornea
Given the reconstructed sclera, we now describe our technique to
reconstruct the transparent cornea. Although the cornea consists
of several thin layers with different optical properties, we found
it sufficient to model the cornea as a single surface with a single
medium respectively index of refraction inside the eye. We use a
surface optimization method that aims to satisfy constraints from
features that are either reflected off or refracted through the cornea.

6.1 Theory

Reconstructing transparent surfaces requires different approaches
than diffuse surface reconstruction since the surface is not directly
visible. Transparent surfaces are generally not completely trans-
missive, but a fraction of light is reflected if the refractive indices
of the media involved differ. Thus, a bright light placed in front of
the cornea will cause a visible highlight that provides a cue about
the surface. Unfortunately, the position of the highlight is view-
dependent and cannot directly be used in a mulit-view setting.

On the other hand, for a single view there is an ambiguity between
the depth along the viewing ray corresponding to a highlight and the
normal of the surface. For every position along a viewing ray there
exists a surface normal reflecting the ray to the origin of the light
(Figure 9a, green). This creates a surface normal field defined by all
possible viewing ray direction and depth combinations. A similar
surface normal field is produced from refractions (Figure 9a, red).
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Figure 9: The depth/normal ambiguity of a highlight (a) and the
sparse normal field in a multi-view setting (b). Corneal constraints
before (c) and after optimization (d).

The reflection and refraction surface normal fields of different
views only coincide at the position of the actual surface as illus-
trated in Figure 9b. We use this property to reconstruct the cornea.

Our system however produces only a sparse sampling of the nor-
mal fields as we employ only a few LEDs. We therefore need to
add regularization to ensure a unique solution, which is provided

through the chosen surface representation. We employ an open uni-
form B-spline surface with 100 control points. This surface has
more representation power than the traditionally employed 4th or-
der Zernike polynomials [Ares and Royo 2006; Smolek and Klyce
2003] yet can be controlled locally, which is beneficial for optimiza-
tion. The control points are spaced regularly and initialized to the
surface of the eyeball proxy introduced in Section 5.4. The position
of the boundary control points are optimized such that the surface
boundaries fit the proxy geometry. The boundary control points are
kept fixed and are not part of the following surface optimization.

6.2 Constraint Initalization

The corneal surface is optimized using three different types of con-
straints: reflection, refraction and position constraints.

Reflection Constraints: The 9 calibrated LEDs placed in front
of the cornea are imaged as highlights in the different views. From
these highlights we extract reflection constraints, which prescribe
the normal for any point along the viewing ray through the high-
light. Since the cornea is convex, every LED-view pair contributes
one constraint assuming the reflection of the LED is visible in the
view. In addition, since we registered the poses in Section 5.3 we
can combine constraints from all different poses. The highlights are
detected and identified similarly as in the calibration phase (Sec-
tion 4.2). While the highlights in the calibration images are ac-
quired in complete darkness, now they appear superimposed on the
iris in the input images, which can lead to false positive detections.
Thus, we remove these unwanted detections by fitting a 2D Gaus-
sian curve to the intensity profiles of all the highlight candidates to
determine their width. Since all the LED highlights have a constant
size we can remove false positives with a lower (3px) and upper
(15px) threshold on the standard deviation of the Gaussian.

Refraction Constraints: Conceptually refraction constraints are
very similar to reflection constraints. Instead of observing the re-
flected highlight of a known LED, we instead observe the refraction
of a feature on the iris at unknown position. Furthermore, the an-
gle of refraction depends on the refractive index. Both the position
of the feature and the refractive index are included as unknowns
into the optimization and solved for. A feature point on the iris
contributes one refractive constraint per view. The corresponding
image location in the different views is estimated via optical flow
[Brox et al. 2004]. Features are filtered as described in Section 5.3
using NCC>0.6 and SD<0.02.

As for reflection constraints, we can combine refraction constraints
from all poses. The distribution density of the features varies sub-
stantially, as we wont have any in the pupil for example. To ac-
count for this we weigh the constraints by the local density, ap-
proximated by the distance d to the 10th nearest constraint as
wrefr = NCC/d2 where NCC is the average normalized cross
correlation score between corresponding image patches used as a
measurement of the quality of the constraint.

Position Constraints: Position constraints are extracted from
the merged sclera mesh (Section 5.4). Their purpose is to pro-
vide a continuous transition from the cornea to the sclera. We ran-
domly sample position constraints on the sclera in the vicinity of
the corneal boundary. To ensure a good distribution, we reject con-
straints that are closer than 1mm to each other.

6.3 Surface Reconstruction

With a given set of reflection, refraction and position constraints
and an initial guess of the surface, the unknown parameters are op-
timized with a two stage approach. More specifically, we optimize



the control points of the B-Spline, the refractive index and the un-
known positions of the feature points on the iris which are used for
the refraction constraints. This amounts to a non-linear optimiza-
tion which we solve using the Levenberg-Marquardt algorithm by
minimizing the error

Etot = λposEpos + λreflErefl + λrefrErefr, (1)

where λpos = 0.1, λrefl = 1, and λrefr = 1 are user-defined
parameters. The error for the position constraints P is given as

Epos =
1

|P|
∑
i∈P

‖pi − ppos
i ‖

2 , (2)

where ppos denotes the position of the constraint and p the nearest
point on the corneal surface. The error for the reflection constraints
Q is given as

Erefl =
1

|Q|
∑
i∈Q

∥∥∥ni − nrefl
i

∥∥∥2 , (3)

where n is the current and nrefl the targeted surface normal. The
error for the refraction constraintsR is given as

Erefr =
1

|R|
∑
i∈R

wrefr
i

∥∥∥piris
i − prefr

i

∥∥∥2 , (4)

where piris is the point on the iris, prefr the closest point on the
refracted ray and wrefr its corresponding weight. Optimizing the
distance to the closest point has proven to be more stable than opti-
mizing the mismatch of the normals analogously to Equation 3.

In the first step we optimize for the control point positions of the
B-spline surface. They are optimized only along the opical axis of
the eye and the boundary control points are kept fixed at all times.
After convergence the surface is kept fixed and we optimize for
the refraction constraint points on the iris (piris) and the refractive
index. We iterate by alternating the two steps until the overall im-
provement drops below 10e−10. The initial and optimized corneal
surface plus constraints are visualized in Figure 10 for one dataset.

a)
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Figure 10: Visualization of the B-spline control points (a), the posi-
tion constraints (b), and a subset of the reflection (c) and refraction
(d) constraints on the initial (left) and optimized (right) surfaces.

6.4 Cornea-Eyeball Merging

We update the eyeball mesh with the optimized cornea by smoothly
blending the corneal surface into the eyeball mesh. First, corneal
samples are computed for each eyeball vertex by intersecting the
cornea in the direction of the eyeball normals. Second, the iris
masks are dilated, blurred, projected onto the cornea, and averaged
to compute blending weights. Finally, the eyeball vertices are com-
bined with the corneal samples by weighting them with the weights.

7 Iris
We now move to the final component of the eye, the iris. In con-
trast to the sclera, we cannot perform traditional multi-view recon-
struction to obtain the iris geometry because the refractive cornea
distorts the views of the iris. Additionally, the cornea transitions
smoothly in opacity from fully transparent to fully opaque at the
sclera, and this smooth transition can confuse multi-view corre-
spondence matching. For these reasons, we create a specific iris re-
construction algorithm that is designed to handle these constraints.
Since the iris is coupled with the pupil, our method begins by lo-
calizing the pupil in 3D. The iris geometry is then reconstructed
and filtered, using the pupil as initialization. Finally, we combine
iris reconstructions from captures with different pupil dilations, al-
lowing us to parameterize and animate the deformation of the iris
during pupillary response.

7.1 Pupil Reconstruction

The pupil has a very prominent position at the center of the eye,
which makes it visually important and artifacts on its boundary
would be clearly visible. Therefore, we require a reconstruction
method for the pupil boundary that is robust with respect to pertur-
bations like, for example, those caused by the flash highlight. This
robust boundary is used to constrain the iris and also to guide the
initial meshing of the iris.

Initialization: The pupil is initialized with the pupil mask bound-
aries that we detect in image space. Each boundary is triangulated
from multiple views, taking into account refraction at the cornea,
and we fit a circle to the triangulated points. The required image
correspondences for the triangulation are obtained from the optical
flow, which we already computed for the refraction constraints of
the cornea optimization.

Refinement: As this initial estimate tends to be rather inaccurate
due to inconsistencies between pupil masks, we refine the estimated
3D circle in an optimization that uses two data terms and two reg-
ularization terms. The data terms come from two additional cues
about the pupil location, 1) an image term that incorporates the re-
sult of an image-based pupil detection algorithm, and 2) a mesh
term that incorporates an approximate 3D surface reconstruction of
the pupil region, triangulated from image correspondences found
using optical flow. The two regularization terms control the overall
shape and smoothness of the pupil. Based on these terms, we define
an energy function for the pupil as

E = λIEI + λMEM + λCEC + λSES , (5)

which we minimize for a set of n = 50 pupil samples taken on the
initial circle, with weights of λI = 10, λM = 1000, λC = 10000,
and λS = 1000 for all data sets. In the following, we will describe
each of the energy terms in more detail.

Image Term: We project the initial pupil circle into the cameras
and blur the images radially along the produced ellipses. We then
use a radial edge detector to locate the edge between the pupil and



the iris, and we apply radial non-maximum suppression (NMS) to
the response. We define the image data term as

EI =
1

n

n∑
i=1

∥∥∥P (pi)− pedge
i

∥∥∥2 , (6)

whereP (p) is the projection of sample point p into the image plane
through the cornea, and pedge is the position of the closest point on
the detected edge.

Mesh Term: We create an approximate 3D surface mesh in the
vicinity of the pupil by triangulating rays from multiple views re-
fracted at the corneal interface, again with the help of optical flow
to provide correspondences. The mesh term for the pupil location
then consists of the distances between the pupil samples and the
generated mesh, given by

EM =
1∑n

i=1 ci

n∑
i=1

ci

∥∥∥pi − pmesh
i

∥∥∥2 , (7)

where the distances are weighted with the triangulation confidences
c of the mesh. The triangulation confidence is defined as a linear
function of the triangulation residuals, which maps a residual of
0mm to a confidence of 1 and a residual of 0.05mm to a confidence
of 0 and clamps all the values outside this range.

Regularization Terms: We allow the samples to deviate orthog-
onally from the perfect circle, but we penalize these deviations with

EC =
1

n

n∑
i=1

∥∥∥pi − pcircle
i

∥∥∥2 , (8)

where pcircle is the corresponding point of p on the circle. To
obtain a smooth pupil we also penalize strong changes in the devia-
tions from one sample to the next, using the following smoothness
term, where r is the radial and o the orthogonal component of the
offset with respect to the circle.

ES =
1

n

n∑
i=1

[
(2ri−ri+1−ri−1)

2 + (2oi−oi+1−oi−1)
2] , (9)

Finally, we minimize the sum of all these terms with the Levenberg-
Marquardt algorithm to find the position, the radius, and the per-
sample deviations from a circle of the pupil. During the optimiza-
tion, we constrain the normal of the pupil circle to the normal of
the plane fit to iris mesh samples taken 1 mm away from the initial
pupil boundary estimate to be more robust. Figure 11 illustrates the
resulting sample positions both in 3D and projected onto an image
(in green), given the initial estimate (in red).

c)b)a)

Figure 11: Pupil reconstruction. Given an initial pupil boundary
estimate (red) from the triangulated image-based pupil masks, we
solve for the optimal pupil boundary (green). The resulting pupil
samples are shown in 3D (a), projected onto one image (b), and
overlaid onto the response of the pupil edge detector (c).

7.2 Iris mesh generation

We use the reconstructed pupil boundary to initialize the iris mesh.
Starting with a closed uniform B-Spline that we fit to the optimized
pupil samples, we scale the spline radially in 0.025mm steps to cre-
ate a sequence of larger and larger rings up to an iris radius of 7mm.
These rings are sampled 600 times and a triangle mesh is created.
This will serve as the topology for the iris.

In a second step, we reconstruct the correct position of each iris
vertex. Each vertex is projected (through the cornea) into a refer-
ence camera, where flow-based correspondences to other views are
computed. We triangulate the vertex position by minimizing the
squared distances between the vertex and the refracted rays formed
by the correspondences. This minimization is equivalent to min-
imizing the surface error defined in Section 6.3. In addition, the
rays are weighted by the root mean square difference of the corre-
sponding 7x7 pixel blocks in image space. In order to reduce high
frequency noise, the entire mesh reconstruction process is repeated
for a second reference camera to obtain a second mesh hypothesis
which is combined with the first one through weighted averaging.

7.3 Mesh cleanup

The reconstructed iris mesh can be noisy and distorted at the bound-
aries due to the translucent sclera affecting the optical flow. We
perform four operations to filter the iris mesh.

Spike Filtering: Spikes are detected by computing a 3-ring
neighborhood around each vertex. If the distance between the ver-
tex and the mean of the neighboring vertices exceeds a threshold
(set to 0.05mm), then the vertices inside the ring are smoothed by
solving a Laplacian system, keeping the rest of the vertices fixed.

Boundary Deformation: Two criteria are used to label distorted
boundary vertices: a threshold on the triangulation residuals (set
to 0.05mm) and an angle threshold between the smoothed vertex
normal and the normal of the pupil set to 30 degrees. We dilate the
labeled region and smooth those vertices in the normal direction.

Mesh Relaxation: The mesh is relaxed locally to improve the
triangulation by removing skinny or overlapping triangles.

Pupil Constraint: The vertices at the pupil boundary are con-
strained to the detected pupil shape. The constraint is enforced
with a local Laplacian system, where the pupil vertices as well as all
mesh vertices farther than 1mm from the pupil are constrained. The
vertices in-between are deformed but the local shape is preserved.

Finally, the two independently triangulated and cleaned mesh hy-
potheses are averaged to create the iris mesh.

7.4 Mesh Propagation

We now combine iris reconstructions from captures with different
pupil dilations. Each mesh is reconstructed independently, with dif-
ferent topology and vertex counts. We wish to compute a new set of
iris meshes that are in vertex-correspondence, allowing us to com-
pute a per vertex deformation model.

We begin by computing per camera optical flow [Brox et al. 2004]
between neighboring poses. Since the vertices are propagated from
one pose to the next, drift might accumulate. To minimize the to-
tal amount of drift we select a reference pose in the middle of the
dilation sequence and compute the optical flow in both dilation di-
rections from there. To find the vertex correspondences we project
each vertex from the source mesh into all the target pose cameras
taking into account the refraction at the cornea. With the resulting
image positions and the optical flows we compute a set of rays that



we refract at the cornea and intersect with the iris of the target pose.
The target pose vertex is computed as the median of all the intersec-
tions. To ensure a clean pupil we enforce the pupil constraint and
relax the mesh in the same way as described in section 7.3.

7.5 Temporal Smoothing and Interpolation

In order to animate the pupil dilation, we will use the captured pupil
poses as keyframes and interpolate linearly in-between. In prac-
tice we found that the dilation of the pupil cannot be accurately
controlled, and so the pupil diameter tends to decrease in irregu-
lar steps. This can lead to multiple poses with very similar diam-
eters and geometry, but with different high frequency reconstruc-
tion noise, which leads to artifacts when interpolating. In order to
smoothly integrate meshes from similar pupil radii, we compute
two linear regression models for all poses within a distance of 1mm
pupil radius. The first regression model expresses the vertex po-
sition and the second model the Laplacian vector as a function of
the pupil radius. We solve for the smoothed mesh by evaluating
both models and solving the resulting Laplacian system with equal
weights given to the Laplacians and the positions.

7.6 Iris Texturing

Iris textures can be computed from a single view, but these textures
will contain undesired artifacts like highlights, washed out regions
close to the boundary, dust on the cornea, etc. These artifacts can
be attenuated by combining the textures from multiple views of the
same iris dilation. We compute a contribution map for each view
which is set to 1 if the pixel is the most saturated from all the candi-
dates and to 0 otherwise. These maps are then blurred with a small
Gaussian kernel of 3 pixels. Based on these contribution maps, the
textures from the different views are blended into a single texture.
Picking the most saturated pixels will reduce artefacts caused by il-
lumination pollution from the flash light and by superposition of the
white sclera at the semi-transparent sclera-cornea transition alike.
Then, we combine the textures from several iris dilations using the
median to attenuate shading changes caused by the deforming iris.

8 Results
In this section we highlight the results of our eye capture technique
by illustrating the reconstructions of a variety of human eyes, each
with its own intricacies and details.

We begin by analyzing the common assumption that eyes can be
modelled as two spheres, a large one for the eyeball and a smaller
one for the cornea. In our work we show that this assumption is
inaccurate, which we can illustrate by overlaying a cross-section of
a captured eye on top of the simple model (Figure 12, left). Further-
more, it is often assumed that an eye is symmetric about the view
vector and that the left and right eye can be modelled similarly. By
capturing both the left and right eye of an actor, we demonstrate that
each eye is in fact unique and shows strong asymmetry individually,
but when combined the expected left/right symmetry is clearly vis-
ible. We believe these results have the potential to change how eyes
are traditionally modelled in computer graphics.

Our eye capture method is robust, which we highlight by recon-
structing 9 different eyes from 6 different actors. The full set of
reconstructions, shown in Figure 13, contains a variety of differ-
ent iris colors, surface details, textures, and overall eye shapes.
Each eye has unique details, but we observed that the differences
between people are more significant than the differences between
the two eyes of the same person, an expected phenomenon that
helps to validate our reconstruction results. For example, the two
brown eyes in the center (5th and 6th from left) are larger than
the rest. These represent the eyes of an actor with severe myopia

Reconstructed surface
Spherical sclera �t
Spherical cornea �t

a) b)

Figure 12: The traditional assumption that an eye can be modelled
as two spheres (red and green) is inaccurate, as indicated by a top-
view cross-section of our reconstruction in blue (left). Eyes also
exhibit strong asymmetry, which we show by reconstructing both
the left and right eyes of the same actor (right).

(or short-sightedness), which is often correlated with larger-than-
normal eyes [Atchison et al. 2004].

Every human eye is unique and contains minor intricacies that add
to the identity of the person. Our capture approach aims to recon-
struct all the visible intricacies. In particular, our sclera reconstruc-
tion is able to acquire high-resolution surface variation including
small details and Pingueculas, as shown in Figure 14.

Figure 14: Our sclera reconstruction technique is able to acquire
fine scale details including Pingueculas (left) and surface variation
(right) that is unique to each eye.

Even more unique is the iris. Figure 15 illustrates one pose of the
reconstructed irises for our 9 actors, visualized on their own with
blue shading for comparing the geometry. The individuality of iris
shape from eye to eye is clearly visible, again highlighting the im-
portance of capturing real eyes using the proposed technique. Fig-
ure 16 shows a close-up view of a captured iris with both surface
details and texture, rendered with refraction through the cornea.

Figure 15: We highlight the uniqueness of each individual iris by
visualizing the 9 captured irises with blue shading.

One of the most interesting features of human eyes is the time-
varying deformation of the iris during pupillary response. Our
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Figure 13: We highlight the robustness of our technique by capturing a wide variety of eyes. This dataset consists of different iris colors,
individual sclera textures, and unique geometry for each eye. In particular, we can see that the two brown eyes in the center are larger than
the others - further highlighting the importance of capture over generic modelling. The measured index of refraction is listed under each eye.

Figure 16: A close-up of detailed iris geometry and texture cap-
tured with our method, rendered in high-quality with refraction
through the cornea and three different light positions.

method is able to recover this deformation, which we illustrate for
one actor in Figure 17. As the pupil changes size, our reconstruction
shows that the iris dilator muscle creates significant out-of-plane
deformation, which largely contributes to the realistic appearance
of the eye. To further illustrate how unique this effect is for each
iris, we provide side-view renders for two additional irises and three
pupil radii in Figure 18.

Figure 17: We measure the iris under various amounts of pupil
dilation. As can be seen, the iris dilator muscle creates significant
out-of-plane deformation as the pupil becomes larger (left to right).

closed

halfway

open

iris 1 iris 2

Figure 18: We highlight the uniqueness of each eye’s iris deforma-
tion during pupil dilation by showing the deformations from a side
view for two different eyes and three different pupil sizes.

The ability to reconstruct a per-vertex deformation model for the
iris during pupil dilation allows us to animate the captured eyes.
We show two different applications for iris animation in Figure 19.
The first is a motion capture scenario. Analogous to the way facial

animation rigs are often built from high-quality scan data and then
later animated from low-resolution mo-cap markers, our captured
irises can be animated from a single low-quality video stream. As
a demonstration, we detect the pupil size of an actor in each frame
of such a video and compute the corresponding iris shape for a cap-
tured actor (Figure 19, top). A second application is to automati-
cally make a digital character respond to lighting changes in the 3D
environment. Using predicted pupillary response curves introduced
in the seminal work of Pamplona et al. [2009], we can animate the
captured iris geometry to show a character dynamically responding
to a light source turning on and off (Figure 19, bottom). As these
applications target iris animation, the results are best viewed in the
accompanying supplemental video.

Figure 19: We can apply the measured iris deformation in a pupil
dilation animation. Here we show two applications: one where an
actor’s pupil is tracked in a single low-quality infra-red video and
the corresponding radius is applied to our model (top). A second
application is to automatically make a digital double respond to
lighting changes in the 3D environment (bottom).

We compare our results qualitatively with the seminal work of
François et al. [François et al. 2009] in Figure 20. While the
strength of their approach is its simplicity, our method arguably
excels in quality. Since we aim to accurately reconstruct all the in-
tricacies of the eye, we more faithfully capture the uniqueness and
realism of eyes. In particular, our reconstructions show the asym-
metric shape of the sclera and fine scale surface variation. Our iris
geometry is reconstructed rather than heuristically synthesized, and
we even recover small defects like the aforementioned Pingueculas
and the non-circular transition between sclera and iris in Figure 20.



Figure 20: We show a comparison with François et al. [2009]
on the left. They employ a generic eyeball model combined with a
heuristic to synthesize the iris morphology. Note how our results
shown on the right faithfully capture the intricacies of this particu-
lar eye, such as its asymmetric shape, the small surface variation,
and the non-circular iris-sclera transition.

In order to provide context for visualizing the captured eyes we
combine them with the partially reconstructed face scans of the ac-
tors. We use a simple combination process that automatically fits
the face geometry around the back of the eyeball using a Laplacian
deformation scheme. While the approach is rudimentary, the result
is sufficient to simulate an eye socket for holding the reconstructed
eye. Several results for different actors are shown in Figure 21, ren-
dered from multiple viewpoints. We note that more sophisticated
methods for capturing the face region around the eyeball would be
ideal topics for future research.

Figure 21: We further demonstrate our results by combining the
captured eyes with partial face scans, and rendering from various
viewpoints with different environment lighting. This figure shows
how the reconstruction results could be used in the visual effects
industry for creating digital doubles.

Finally, we wish to highlight the potential impact that capturing real
eyes can have in creating artistic digital doubles - a task that is often
performed for visual effects in films. To this end, we combine both
of the captured eyes of an actor together with a face scan to create a
compelling rendition of an artistically designed digital human char-
acter, as shown in Figure 22. Such a result would traditionally take
significant artistic skill and man-hours to generate, in particular if
the digital character should closely resemble a real actor. Our result
was created with very little effort, thanks to our new method for
capturing real human eyes.

All our textured results are rendered in a single pass using Au-
todesk Maya with Octane Render. We use built-in diffuse materials
with subsurface scattering for the sclera and the iris, and reflec-
tive/refractive materials for the cornea plus a water layer created by

Figure 22: We combine both captured eyes of an actor together
with a face scan to further demonstrate how our results can be used
to create artistic digital doubles.

extruding the sclera by 0.1 mm. The total processing time to re-
construct a complete eye on a standard Windows PC with a 3.2 Ghz
6-core CPU is approximately 4 hours (2 hours for initial reconstruc-
tion, 20 minutes for the sclera, 5-10 minutes for the cornea, 1 hour
for the iris, and 40 minutes for unoptimized texture synthesis). The
main bottleneck is the computation of optical flow.

9 Conclusion
We present a unified framework to capture shape and texture of the
most prominent components of the eye at unprecedented level of
detail, including the sclera, the cornea, and the iris. We demon-
strate that the generic eye models typically used in our community
are not sufficient to represent all the intricacies of an eye, which are
very person-specific, and we believe that the findings of this paper
have the potential to alter our community’s current assumptions re-
garding human eyes. In addition, we present the first method for
reconstructing detailed iris deformation during pupil dilation, and
demonstrate two applications of how data-driven iris animations
combined with our high-quality eye reconstructions can be used to
add realism to digital doubles in visual effects.

Our method focuses purely on the static eye combined with the dy-
namic deformation of the iris. The dynamic aspects of an eyeball
with its complex motion patterns would be an exciting future exten-
sion. It would also be interesting to model the variation present in
the individual eyes, similar as has been done for faces [Blanz and
Vetter 1999], to provide the user with a descriptive and parametric
eye model that can be used to synthesize novel eyes.

Limitations. Our system is designed to capture the geometry of
the eye with different pupil dilations, however we currently do
not capture dynamic behavior such as saccades, hippus, or tremor.
Also, since the iris is a volumetric object with partially translucent
tissue it is difficult to reconstruct accurately. For this reason we
approximate the iris as a surface, however we believe that the opti-
cal flow correspondences used to reconstruct that surface are suffi-
ciently accurate to represent the iris with adequate details suitable
for rendering, already a step forward from traditional practices that
approximate the iris as a plane or cone. In this work we do not cap-
ture reflectance properties of the eyes, such as BRDF or BSSRDF
parameters. All these topics could be addressed in future work.
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