
Pacific Graphics 2016
E. Grinspun, B. Bickel, and Y. Dobashi
(Guest Editors)

Volume 35 (2016), Number 7

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

L. Ciccone1 M. Guay2 R. Sumner1,2

1ETH Zurich 2Disney Research Zurich

Figure 1: Our new Flow Curves interface is designed to help artists to take a scene with an ambiguous flow (left), and quickly turn it into a
compelling scene (right) by simply sketching strokes—inducing whole-scene, multi-object deformations.

Abstract

Effective composition in visual arts relies on the principle of movement, where the viewer’s eye is directed along subjective
curves to a center of interest. We call these curves subjective because they may span the edges and/or center-lines of multiple
objects, as well as contain missing portions which are automatically filled by our visual system. By carefully coordinating
the shape of objects in a scene, skilled artists direct the viewer’s attention via strong subjective curves. While traditional 2D
sketching is a natural fit for this task, current 3D tools are object-centric and do not accommodate coherent deformation of
multiple shapes into smooth flows. We address this shortcoming with a new sketch-based interface called Flow Curves which
allows coordinating deformation across multiple objects. Core components of our method include an understanding of the
principle of flow, algorithms to automatically identify subjective curve elements that may span multiple disconnected objects,
and a deformation representation tailored to the view-dependent nature of scene movement. As demonstrated in our video,
sketching flow curves requires significantly less time than using traditional 3D editing workflows.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

“The central point of interest has nothing to do with the center of
the frame, but everything to do with where you wish the audience’s
eye to eventually rest.” [But02]

When viewing a piece of visual art or design, our eye is often nat-
urally drawn towards one main area of the scene, typically where
the main character, object or action is located. This effect is not
accidental. Rather, it results from skilled artists cleverly exploiting
mechanisms of our visual system in order to more effectively com-
municate the important elements of an image. In particular, they
use our tendency to pick up contrast edges across multiple objects
and join them together into longer imaginary subjective curves that
direct the eye’s movement across the image. Hence, by carefully

shaping and coordinating contrast edges across objects in a scene,
visual artists are capable of controlling the very way we look at an
image and bring our attention to a center-point (see Fig. 2). This
concept is referred to as the principle of movement in visual arts,
flow in design, and good continuation in Gestalt perceptual theory.

Traditional 2D sketching offers the freedom to naturally craft and
design scene-wise subjective curves. In contrast, current 3D tools
are designed in an object-centric fashion which does not easily ac-
commodate building a coherent movement, for a given view-point.
In fact, digital artists are obliged to shape each object separately,
using several rig and deformation handles that typically differ from
object to object. In other words, these tools are agnostic to the artis-
tic principle of movement and provide no means of expressing co-

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

Figure 2: Illustration of movement in existing artwork (Left: book
cover of Predator’s Gold, Middle: screenshot from Mickey’s Christ-
mas Carol, Right: poster of Ratatouille). Yellow lines represent sub-
jective curves pointing to a center-point.

herence across multiple objects in a scene. Hence, despite the dra-
matic importance of movement in visual design, 3D artists are left
with a cumbersome, indirect and time consuming workflow.

Our work addresses this shortcoming by introducing a new
sketch-based interface called Flow Curves that provides a direct
coordination control across multiple objects. From raw input ge-
ometry, we automatically compute a deformation embedding for
objects in the scene that allows directly deforming shapes without
rig setup time. To provide the user with the possibility to deform
objects with a single stroke, we automatically compute subjective
curve elements (or SEcurves) spanning multiple objects in the form
of principal curves and abstract contours. By defining a flow curve
as a shape constraint over close-by SEcurves, we can optimize for a
scene deformation that conforms to the sketched flow curves. When
compared to traditional workflows, our interface offers a significant
increase in efficiency (see video and Table 1 for comparison).

Our main contribution is a definition of flow curves as shape
constraints over SEcurves formed from contrast edges in a scene.
We additionally contribute automatic techniques for computing two
classes of often-found SEcurves: principle curves and abstract con-
tours. We demonstrate the efficiency of our approach with a direct
deformation implementation that allows deforming scenes without
manual rig setup time.

2. Related Work

Artistic principles. The principles of visual arts reflect the dif-
ferent aspects of the human visual system and serve as guide-
lines for shaping scenes into aesthetically pleasing images. Sev-
eral principles contribute to the overall coherence and aesthetic of
a scene; some of which have already been integrated into compu-
tational tools, such as balance for photo composition [LCWCO10]
and scene layout placement [LMLF15], or emphasis for directing
gaze [CDF∗06, BMSG09]. In this paper, we focus on the princi-
ple of movement where subjective curves flow across contrasts to-
wards a center-point, leading the viewer’s attention to the impor-
tant parts of the scene. “Movement is the way a viewer’s eye is
directed to move through a composition, often to areas of empha-
sis.” [Gla13]. To our knowledge, this principle has never been used
for whole scene deformation, but only for individual characters
with the line of action drawing concept [OBP∗13, GCR13], where
the whole shape of a character forms a smooth (skeletal) curve
pointing towards the main action in the scene. Our flow curves sub-
sume lines of action and allow deforming whole scenes—including
characters—using a single stroke.

Subjective curves are imaginary curves that we perceive when

grouping together salient contrast edges and points. Gestalt the-
ory refers to this perceptual phenomenon as the principle of “good
continuation” [Wer38]. Due to its subjective nature, a precise math-
ematical characterization of good continuation remains elusive.
Additionally, the bulk of academic research in computer vision
is geared towards identifying “existing” subjective curves, either
via fixed primitives such as circle arcs and Euler spirals [Ull76],
minimal curvature splines [Hor83, Mum94], or probabilistic mod-
els [WJ97] where a scalar (probability) field is computed from all
the pairwise interactions between edge segments (curve formed by
tracing paths along probability peaks). These methods identify sub-
jective curves in existing images, while our work provides a practi-
cal tool for shaping and forming new subjective curves.

Intuitive editing interfaces. Today, the prevailing interaction
metaphor for object deformation interfaces is click-and-drag of in-
dividual controls. For example, skeletal bones are used for charac-
ters [BW76, MTLT88], while lattice grids (FFD) are used for free-
form objects such as point clouds or triangle soups [SP86, SF98,
MJBF02]. Unfortunately, this type of interaction does not accom-
modate artistic principles. Recently many researchers investigated
sketching as a more natural way of editing 3D content [DIC∗03,
HQ03, KG05, NSACO05, ZNA07, KSvdP09, GCR13, HMC∗15].

A deformation is defined via sketching a pair of curves: a
reference and a target. Several works exploit the mesh geome-
try [NSACO05,ZNA07,KSvdP09] or rig of the character [DIC∗03,
GCR13] (e.g. its skeleton) to compute the reference curve. Unfor-
tunately, these techniques do not allow deforming multiple objects
simultaneously with a single stroke. In contrast, we automatically
compute multi-objects abstractions (subjective curve elements de-
scribed in section 4) which allow the user to directly deform multi-
ple objects with a single stroke.

Automatic shape abstractions. To allow the user to deform
raw scenes with a single stroke, we automatically compute abstrac-
tions in the form of principle curves and abstract contours. While
it would be straightforward to use rigged objects with our method
(skeletons representing a good abstraction for many shapes), we de-
cided to work in the general case where most objects of the scene
are not rigged (trees, fences, furniture, etc.). Automatic skeleton-
isation technics compute a skeleton from a mesh or point cloud
[ATC∗08, TZCO09] but yield skeletons with noisy branches that
can rarely be sketched directly. Another approach is to assume
a parametric curve such as a spline and optimize its shape as
to conform to the object using an iterative closest point frame-
work [KWT88]. We build upon this approach as it is well suited
for sketching the smooth splines. Other works on shape abstrac-
tions seek to remove details while preserving a coarse version of
the shape [MDS09, MZL∗09]. However, pruning parts of objects
solely based on geometric features does not result in proper outer-
abstractions such as contours in the case of pointy objects, e.g.
branches of a tree or poles of a fence.

Direct deformation of scenes. One of the challenges of scene
deformation is the fact that different objects are typically deformed
with different algorithms (e.g. skeleton, lattice-FFD, etc). Hence
the ability to quickly edit an existing raw scene requires a unified
approach to multi-object deformation. One approach to direct de-
formation of 3D objects is to formulate the deformation directly on

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

Figure 3: Overview of our approach applied on a simple scene. The user gives as input a 3D scene, on which our system automatically
computes SEcurves (in the form of objects abstractions) and a 2D grid embedding of the objects (used for deformation). Then, when the user
provides a flow curve, SEcurve pieces are selected and associated to corresponding flow curve pieces based on a geometric closest-point
approach, and the grids are deformed as to have these SEcurve pieces match the shape of the flow curve, in screen-space.

the mesh vertices, typically by penalizing the distortion of trian-
gle elements [SCOL∗04a, SA07] while matching some vertex po-
sition constraints. Unfortunately, this approach does not support
disconnected meshes and point clouds, such as fluids. Addition-
ally, the complexity of the deformation is proportional to the num-
ber of vertices, which can impede interactive refinement. An al-
ternative is to automatically compute an embedding of the geome-
try [SSP07,BPWG07,SDC09] and use similar deformation formu-
lations on the grid embedding elements instead. We build upon this
approach by computing a 2D grid embedding of the 3D elements,
in sceen-space, that reflects the intrinsic shape of the objects.

Others have used whole scene 2D grid embeddings, mainly in
the context of image warping [CAA10, OEYK12]. Unfortunately,
a single 2D grid does not reflect the structural components of
the objects in the scene and can lead to undesirable distortions.
For example, bending a branch will distort the space around it.
Similar to spatial warping, rendering using a nonlinear projec-
tion [CS04, CSB∗05, BSCS07] allows to deform images. These
techniques do not allow deforming individual parts of objects with
ease and, as with spatial warping, do not allow deforming objects
without warping the space around them (e.g. the background). In
contrast, we benefit from the fast computation of 2D deformation,
while preserving the intrinsic shape of objects.

3. Overview

Our interface is designed to allow users to apply the principle of
movement in a fast and natural way. Our approach is based on
deforming the geometry of a scene as to form subjective curves
aligned with user-provided flow curves and/or smoothly pointing
towards a user-specified center-point. Devising such a tool requires
overcoming several challenges.

First, we need to determine which contrasts in the scene could
be deformed to form strong subjective curves. Since our goal is
different from computing existing subjective curves in images, we
compute partial subjective curve elements that we call SEcurves,

short for Subjective Elements. While detecting these is highly am-
biguous, we observed that in many cases, subjective curves are
formed from a skeletal curve of objects, or from parts of abstract
outer-contours. Based on these observations, we compute principal
curves for thin objects and abstract contours for complex ones, as
well as groups of objects (Section 4). While these SEcurves cover
a wide range of cases, users may sketch additional ones if desired.

As a means of forming coherent subjective curves via scene
deformations, we introduce a sketch-based interface called Flow
Curves. The flow curves are defined as shape constraints for SE-
curves in their vicinity (Section 5). We offer two intuitive ways of
specifying flow curves: 1-by sketching strokes, which provides di-
rect control onto the subjective curves of the scene and 2-by sketch-
ing a center-point which automatically generates a coherent net-
work of flow curves converging towards it. This center-point pro-
vides coordinated control onto the scene’s movement as a whole.

To match the SEcurves to their corresponding flow curves, we
need a deformation method that allows deforming different types
of objects (including point clouds such as liquids), requires little
manual setup time, and preserves the intrinsic shape of objects (i.e.
does not distort space). Our solution to these requirements is to
compute a 2D grid embedding in screen-space for each individual
object in the scene (Section 6.1), and to formulate the constrained
deformation on the grid embedding (Section 6.3). Constraints are
the target position of SEcurves and the conservation of the objects
placement layout.

4. Subjective Curve Elements

Our visual system perceives curves that are
subjective and not entirely explicit: we fill-in
the space between contrast edges and points,
and even skip over parts of objects at high
curvature points, in favor of longer smoother
curves. For example, in the image on the left,
we naturally see two solid triangles while none

is entirely present. In this section, we identify strong edges and

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

shape features that could be elements of subjective curves—we call
them SEcurves.

The goal of our tool is to facilitate coordinating SEcurves into
forming long and coherent subjective curves—as opposed to find-
ing existing subjective curves as is done in the computer vision
literature. Computing edges is often noisy as well as impractical
for sketching. Additionally, computing every possible edges that
could be used for creating movement in a scene would make the
selection process ambiguous (how to pick the right SEcurve from a
soup of edges?). By observing users sketching their own subjective
curves, we found that they are often formed from two categories of
recurrent SEcurves. The first is principal curves which abstract thin
objects, and the second is abstract contours which join the tips and
edges of complex shapes such as trees, plants and fences, as well
as join together groups of nearby objects.

Based on these observations, we first compute for each object in
the scene both their principal curve (a generalization of the princi-
pal axis, detailed in Section 4.1) and abstract contour (Section 4.2).
Then we decide which is best suited based on a measure of thinness.
We estimate thinness as the variance of the point-wise distance di
between each point of the principal curve and the contour. A small
variance means that the principal curve is a better approximation of
the object than the abstract contour. Hence, if ∑d2

i /N− (∑di/N)2

is below a threshold, we keep the principal curve, otherwise we
keep the contour.

Shapes may form a principal curve individually, but when lo-
cated close to each other join and form a stronger contour, as shown
by the four poles in Fig. 3. Hence, in a second step, we measure
whether multiple principal curves are close to one another, in which
case we compute an abstract contour around this group of objects.
As a result, the group holds individual principal curves and a group-
wise abstract contour.

4.1. Principal Curves

The tombs on the left illustrate how principal
curves (the blue curve on the right) are a prac-
tical approximation of side contrast edges (the
green curves on the left). We propose a method
to automatically compute principal curves for
arbitrary objects in the scene. Principal curves

have been studied in statistics as a non-parametric model of curved
manifolds and a generalization of the principal (vector) component
[Sil85]. We follow a spline regression framework, where the cor-
respondence between the data points and the spline is not known a
priori but must be estimated—typically in an iterative closest point
(ICP) fashion.

Applying this technique to 3D meshes leads to problems of its
own. First, the distribution of points along the surface can influ-
ence the shape of the principal curve, hence we need to re-sample
the surface uniformly. Second, minimizing the distance alone can
lead to spurious curves when applied to shapes that are not equally
spaced-out w.r.t. their center-line (such as the tree in Fig. 4). We
address this issue with iterative regularization, i.e. we penalize the
solution w.r.t. the last computed curve between consecutive ICP it-
erations.

Our first step is to compute a uniform sampling of the surface
mesh. As we work in screen space, we use the depth map and sam-
ple pixels whose depth is lower than 1, yielding 2D surface points
X = {x1,x2, ...,xN}. Note, we believe our approach easily extends
to the 3D case with 3D surface re-sampling. We initialize the spline
c0(s) to the principal axis xaxis of the surface by computing the
largest eigen vector of the sample covariance matrix formed from
all the surface points Cov(X ,X) = 1

N ∑
N
i=1 (xi− x̄)(xi− x̄)T , using

principal component analysis. We use cubic Hermite splines in our
implementation, and initialize the length of c0(s) to the size of the
shape in its principal direction.

Then, we refine the curve by iteratively solving the following
problem. At each iteration, we compute the parametric correspon-
dence s∗i of every surface point xi to the current principal curve
by computing the closest point (s∗i = argmins ‖xi− ck(s)‖). And
then we minimize the euclidian distance between both points, w.r.t.
the spline degrees of freedom, while penalizing deviations in shape
from the previous curve:

ck+1(s) = min
c(s)

w1 ∑
i

∥∥xi− c(s∗i)
∥∥2

+w2

∫
s

∥∥∥∥∂c(s)
∂s
− ∂ck(s)

∂s

∥∥∥∥2

.

We then increase k and iterate until no more improvement is
gained. In our implementation, we used a weight w2 1000 times
bigger than w1. To compute this integral, as well as all the fol-
lowing ones, we discretize the Hermite curve into equally-spaced
points and sum over the desired values at these points. Examples of
principal curves computed by our algorithm are shown in Fig. 4.

Figure 4: Thin objects can be abstracted by a principal curve,
which approximates their side edges.

4.2. Abstract Contours

Subjective elements are often perceivable around the tips and edges
of complex shapes, or joining groups of close objects. Outer-
contour groupings are often what we naturally sketch when drafting
the shape of objects and as such are an important class of SEcurves
(see Fig. 3 middle).

We also use spline fitting to compute the abstract (outer) contour
of an object or group of objects, but here using a closed curve. We
minimize the area EA(c) enclosed by the curve c(s) while prevent-
ing points of the object from moving outside the curve, resulting
in a penalizing energy term EO(c). The level of abstraction is con-
trolled by weighting the curvature penalization term EC(c). For the
closed curve c(s), we use a cubic Hermite spline and initialize it to
the bounding box around the object. We detail bellow the optimiza-
tion problem we solve.

Area EA(c). We penalize the area enclosed by the curve, scaled
by the object’s bounding box area a0. We discretize the curve into
equal-length segments and compute the enclosed area by summing

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

all the signed areas under these segments, using the determinant of
the 2× 2 matrix formed by setting the consecutive curve samples
as columns: [c(si)c(si+1)], resulting in:

EA(c) =
1

2 ·a0

∣∣∣∣∣∑i
Det [c(si)c(si+1)]

∣∣∣∣∣ .
Outside points EO(c). We compute the number of edge pixels pi
outside the curve c(s). To do so, we trace vertical lines (in the ~y
direction) starting at each edge pixel pi, and count the number I(pi)
of intersections with c(s). The parity of I(pi) determines whether it
is inside (odd) or outside (even). Note that this term acts as a hard
constraint and thus has a large weight wO.

EO(c) = ∑
i

1− (I(pi)%2) .

Curvature EC(c). We penalize the curvature of the contour c(s),
which corresponds to its second derivative (we approximate it nu-
merically using equally-spaced samples). Controlling a soft curva-
ture penalty weight controls the level of abstraction of the contour.
Indeed, if c(s) is allowed to be flexible, it can move inside cavities
of the object in order to minimize area.

EC(c) =
∫

s

∥∥∥∥∥∂
2c(s)
∂2s

∥∥∥∥∥
2

.

The total energy is non-linear and the term EO is discontinuous.
Hence we minimize the sum of energies using stochastic optimiza-
tion with Covariance Matrix Adaptation (CMA):

E(c) = wAEA(c)+wOEO(c)+wCEC(c),

setting the parameters to wA = 100 , wO = 105, and wC = 5 in
our results. Note that there can be infinite reparameterizations of
c(s) that yield the same total energy values; this can cause global
stochastic optimization to loop without significant gains. We alle-
viate this issue with a stopping criteria based on the relative im-
provement of the objective function. Examples of abstract contours
computed by our algorithm are shown in Fig. 5.

Figure 5: Complex shapes, as well as groups of objects, form ab-
stract contours. We compute them using spline fitting, i.e. by mini-
mizing the area of a closed spline curve while ensuring that points
of the object remain inside the closed curve. The level of abstrac-
tion is controlled by penalizing curvature.

5. Flow Curves

We define flow curves as shape constraints over SEcurves. The goal
of flow curves is to design smooth movement and we thus first de-
scribe how to control the smoothness of the sketched flow curve—if
desired by the user. A second goal is coherence, not only for indi-
vidual subjective curves, but also for the scene as a whole. Hence,

the second control we provide to the user is a center-point, which
generates a coherent network of smooth flow curves.

5.1. Flow Curve from Sketched Stroke

We can control the smoothness of a flow curve γ(s) drawn by the
user via spline fitting and curvature penalization. We fit a cubic
Hermite curve to the stroke samples fi while penalizing the second
derivative of the curve:

min
γ(s)

∑
i

w1 ‖ fi− γ(si)‖2 +w2

∫
s

∥∥∥∥∥∂
2
γ(s)

∂2s

∥∥∥∥∥
2

, (1)

which we optimize w.r.t. all the spline degrees of freedom, i.e.
the position and tangent of every control point. The number of
control points nγ is determined by the length lγ of the sketched
stroke. Observing that a flow curve of length ws/4 (ws being the
width of the screen) is well represent by 4 control points, we used
nγ =

⌈
3 · 4·lγ

ws

⌉
+1.

5.2. Flow Curves Network from Center-Point

When the user sketches a circle shape, we interpret its center of
mass as the center-point and generate a network of flow curves. To
be consistent with the current scene, the generated network depends
on the scene configuration and the present SEcurves. But its defi-
nition is unfortunately not unique; for example, on the top row of
Fig. 6, we can see that each subjective element individually points
towards the center-point, while on the second row, they move in ac-
cordance, eventually bending towards the center-point. Hence, we
compute a parametric space of flow curves and provide the user
with a flow radius parameter dMax, indirectly controlling the num-
ber of flow curves generated.

Figure 6: We allow the user to specify only a center-point, from
which several flow curves are computed—each converging to the
center-point. We first initialize the flow curves (in purple) from the
SEcurves (in blue), as shown in the left column. The user can con-
trol the amount of grouping for the generated flow curves through a
parameter dMax. The right column shows the deformed curves and
scenes.

Our idea is to first compute average curves from the SEcurves
present in the scene, before bending them in order to make them
coherently flow towards the center-point.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

Figure 7: To deform arbitrary objects in the scene, we compute a 2D embedding of the object, in screen-space, which is then used for
deformation. The grid is a coarse approximation that preserves its intrinsic shape when deformed. The SEcurves are expressed as linear
functions of the 2D grid triangles, shown with red points. We optimize for a deformation of the grid as to match the shape of DEcurves (in
blue) to the shape of their corresponding flow curves (in purple).

Average curves. To estimate the average flow curve in a region
of the scene, we first extrapolate each SEcurve in both directions
by interpolating the direction of the nearest SEcurves. To do so,
we start with an extremity c(1) (or c(0)) and look for the nearest
points c j(s∗) on the other SEcurves at a distance below dMax. Then
we integrate the curve’s position by averaging the directions with
an inverse distance weighting scheme:

c(s+∆s) = c(s)+∆s
∑

N
j=1 r(‖c j(s∗)− c(s)‖) ∂c j(s∗)

∂s

∑
N
j=1 r(‖c j(s∗)− c(s)‖)

,

where r is a radial kernel function used to interpolate the direc-
tions of the neighboring SEcurves; we used r(d) = 1

1+d2 . Note that
we only include in the sum the points that verify ‖c j(s∗)−c(s)‖<
dMax and ∠

(
∂c j(s∗)

∂s ,
∂c(s)

∂s

)
< θMax. This condition on the angle be-

tween tangents allows avoiding influence from inappropriate curves
and supporting curves crossing each other (we used θMax =

π

3). We
stop when there is no more point verifying these conditions.
Finally, knowing which SEcurves influenced the extrapolation of
which other ones, we cluster the resulting curves. We then compute
their average curve c̄(s) (by imposing a common parametrization
on every clustered curve), that we smooth into a Hermite curve us-
ing eq.(1).

Bending curves. We now bend the computed average curves as to
have them smoothly join the center-point (Fig. 6 right). For each
curve c̄(s), we fix an extremity control point (its position and tan-
gent) and deform the remaining part as to point towards the center-
point, giving a flow curve γ(s). To know in which direction to de-
form the curve (i.e. choosing between fixing c̄(0) or c̄(1)), we de-
form both cases and measure the deformation magnitude (differ-
ence in shape), and we select the case yielding the smallest defor-
mation. Note that we also use this measure to remove flow curves
that would deform the scene too drastically.

Having a flow curve join a center-point means that if we extrapo-
late its path it should eventually touch the center-point. We approx-
imate this measure with the angle between the curve’s tangent at
its tip and the vector between the tip position and the center-point,
resulting in θp = ∠(γ(1)− xp,

∂γ(1)
∂s). Also, the length of the curve

l(γ) is constrained to stay close to the initial length l(c̄). Hence by
minimizing these values and controlling the smoothness via curva-

ture, we obtain the following problem:

min
γ(s)

w1 θ
2
p +w2 |l(γ)− l(c̄)|+w3

∫
s

∥∥∥∥∥∂
2
γ(s)

∂2s

∥∥∥∥∥
2

subject to γ(0) = c̄(0),
∂γ(0)

∂s
=

∂c̄(0)
∂s

,

(2)

where the direction term has a larger weight (w1 = 500) than length
conservation (w2 = 0.5) and curve smoothing (w3 = 7), to ensure
pointing towards the center-point.

6. Direct Deformation of Scene Objects

Deforming the scene objects as to have SEcurves match the shape
of flow curves would require re-computing them at each step of
the process. We circumvent this problem by using a common 2D
grid embedding of both the object geometry and SEcurves (Sec-
tion 6.1). The correspondence between SEcurves and flow curves
is automatically computed using proximity and shape criteria (Sec-
tion 6.2). From the correspondence, we derive position constraints
on grid vertices for matching the curves, and then minimize an as-
rigid-as-possible energy expressed on the grid embedding vertices
(Section 6.3).

6.1. 2D Grid Embedding

Since movement edits are screen-space refinements, we utilize a
deformation representation designed to operate in screen-space.
Given a 3D object with vertices V = {v1,v2, ...,vN}, we build a
2D triangle grid embedding defined by vertices xg by uniformly
tessellating the object’s bounding box in screen space at a fixed
resolution (15 pixels in our examples). We then remove all trian-
gles not occupied by the mesh so that the grid closely conforms to
the object’s projected shape (see Fig. 7, left). We parameterize the
3D object vertices vi to their projected position Pvi = φi(xg) in the
grid using barycentric coordinates, together with depth values in
view space dzi = ‖vi−Pvi‖. Here, P is the perspective projection
matrix. After deforming grid elements xg into x′g (section 6.3), we
recover the deformed mesh position v′i with:

v′i = φi(x
′
g)+dzi xdir, (3)

where xdir is the unit vector between the camera position and point
x′g(i) on the screen.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

6.2. Automatic Correspondence

Given a flow curve γ and SEcurves ci, we automatically select parts
of SEcurves that will be transformed and compute their correspon-
dence to the flow curve. The result are new curve segments cl and
γl , sharing a common parameterization s: cl(s)→ γl(s). Our solu-
tion consists of two steps. We first select curve segments c̃k and
γ̃k based on a closest point approach combined with a curve sim-
ilarity measure [CG97]. Because this initial selection may include
SEcurve segments that are either too small or in conflict with one
another (an example is the tree’s contour in Fig. 7, which could
have both parts of its base selected), we filter undesirable segments
based on a score.

The initial segmentation process computes all the corresponding
SEcurve segments c̃k and flow curve segments γ̃k, by going through
all the points of the discretized curve ci and storing the ones ci(s j)
whose closest point γ(s∗j) is under a threshold ‖γ(s∗j)−ci(s j)‖< dm
(we use dm = 100 pixels), and whose angle between tangents is

under a threshold ∠
(

∂ci(s j)
∂s ,

∂γ(s∗j)
∂s

)
< θm (we use θm = 2

3 π). The
result is a set of corresponding curve segments c̃k→ γ̃k.

Then, to filter undesirable segments, we compute a score S(c̃k)
for each segment, based on its length and mean distance to the flow
curve (i.e. mean of ‖γ̃k(s j)− c̃k(s j)‖):

S(c̃k) = w1 l(c̃k)+w2
1

1+d(γ̃k, c̃k)
.

We keep only segments whose score is above Smin, resulting in the
set of segments {cl ,γl}. We use values w1 = 1, w2 = 105 and Smin =
150 in our implementation.

6.3. Deformation

Given a flow curve segment γl and its corresponding SEcurve seg-
ment cl (computed in section 6.2), our goal is to deform the grids
as to match the shape of cl to the shape of γl :

∂cl(s)
∂s

=
∂γl(s)

∂s
. (4)

We achieve this by computing an as-rigid-as-possible grid deforma-
tion that satisfies this differential constraint. For increased speed,
we use a fast implementation of ARAP which only solves for hard
position constraints. We thus turn the differential constraints into
hard position constraints of the grid vertices wi. We also add posi-
tional constraints to preserve the initial placement of objects in the
scene.

Layout positions constraints. We compute intersections between
objects and create position constraints for all grid vertices to which
these intersections project: w∗i ,∀i ∈ L, where L is the set of all con-
strained positions’ indices on a given object grid. When no position
constraints are detected for a particular object, the natural behavior
is to translate, allowing their SEcurves to match the flow curve, as
is the case for the birds in Fig. 8.

Shape constraints into position constraints. We approximate the
differential expression above (eq. 4) in terms of positional con-
straints by translating the flow curve γl to the position on the sub-
jective curve that is closest to a constrained grid point: γl(s) :=

γl(s)+ (cl(s
∗)− γl(s

∗)), where s∗ = argmins ‖cl(s)−w∗i ‖∀ i ∈ L.
When there are no constrained grid positions (L = ∅), we trans-
late the SEcurve to the nearest flow curve point: cl(s) := cl(s) +
(γl(s

∗)− cl(s
∗)), where s∗ = argmins ‖cl(s)− γl(s)‖. We then use

γ as a position matching constraint. We derive the appropriate con-
strained grid positions similarly to other sketch-based deformation
methods [ZNA07], by mapping the relative position of vertices
close to cl onto γl .

Given these constraints, we wish to compute a deformed grid
that respects the constraints while minimizing the local distortion
of grid elements. To do so, we compute a deformation energy
Eshape(T) that measures the non-rigidity of triangle transforma-
tions T = T1,T2, ..., where Ti transforms triangle i from its unde-
formed to its deformed state. As such deformations are well stud-
ied, we employ an as-rigid-as-possible deformation [SCOL∗04b]
to solve the following problem:

min
xg

Eshape(T)

subject to cl(s) = γl(s) ∀ l

wi = w∗i ∀i ∈ L

(5)

Vertex position constraints are enforced by construction by remov-
ing them from the set of unknown variables. Due to the 2D formu-
lation, the overall system is solved efficiently, leading to interactive
performance. After solving for the grid deformation, we recover the
mesh vertex positions using eq. (3).

7. Results and Discussion

Fig. 8 shows how four different scenes were edited using sketched
flow curves. We refer to them as 1-Fountain, 2-Octopus, 3-Cliff
and 4-Cemetery, following the top-to-bottom order. The last three
scenes (2,3,4) are inspired by existing artworks (the ones shown in
Fig. 2). The various scenes allowed us to evaluate our interface on
different types of objects (connected and disconnected meshes such
as the poles of a fence) and scene configurations.

The second functionality provided by flow curves is the ability
to sketch a center-point circle. The center-point—taken as the cen-
ter of the sketched curve—automatically generates coherent flow
curves to deform the scene (as described in Section 5). In both
Fig. 9 and accompanying video, we show the possibility for the
user to interactively manipulate the center-point while our system
generates coherent flow curves that directly deform the scene.

To evaluate the efficiency of our tool, we invited two artists with
more than 7 years of professional experience. We asked them to
deform 5 scenes using their favorite Software (Maya) in order to
create a personalized movement. Then they used our flow curves to
create similar deformations on the same initial scenes. An example
of this evaluation is shown in Fig. 10, as well as in the beginning of
our accompanying video. The additional 4 deformation results are
available in a supplementary document.

Both artists were impressed by the ease of use of our tool and
appreciated the direct use (i.e. no manual setup). Table 1 compares
the times taken both in Maya and using our Flow curves, as well as
the required number of mouse clicks: our interface is on average 6
times faster and require 8 times less clicks. Flow Curves was man-
ifestly much more intuitive and faster than deformers available in

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

Figure 8: The left column is the input scene. In the middle column are the SEcurves in blue and the sketched flow curves in purple. The
SEcurves were computed automatically in the first two rows, and manually specified in the last two rows. The last column is the final
deformed scene. Note that we preserve the initial object placement layout: objects in contact remain so during deformation, as is the case
with the trees and ground, or the knives and boxes. When there are no contacts, such as the small birds in the third row, the flow curves
automatically become position constraints. See section 6.3 for more details.

Figure 9: The user can control the center-point, thereby interactively inducing flow-preserving deformations over the whole scene.

Figure 10: Footage from our comparison between Flow Curves and Maya. Starting from the input scene on the left, an expert animator took
6 minutes to complete the scene in the middle using Maya, and only 23 seconds to complete the scene on the right using Flow Curves.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

Maya, however it did not offer the same level of control. In fact,
both artists mentioned that they would like to use Flow Curves as
a fast and natural way to deform their scenes, and to then use addi-
tional deformers if more detailed refinements are needed.

Table 1: Comparison of the time and mouse clicks required by pro-
fessional artists to deform the same scenes in Maya and with Flow
Curves. The scenes and deformations are shown in the supplemen-
tary material.

8. Limitations and Future Work

In our effort to offer a fully automatic interface that works on raw
scene geometry with little manual setup, we made assumptions
about the user’s intentions. In particular, we automatically com-
pute the correspondence between SEcurves and flow curves (Sec-
tion 6.2), but this may not reflect the expectation of the user (he
or she may only want to modify closer SEcurves, or maybe sketch
larger deformations). This issue is easily removed with manual in-
tervention, such as by sketching over the desired SEcurve portions
that one would like to modify. Also, when computing SEcurves in
the scene, the performance of our algorithm depends on the seg-
mentation of the scene. For example, the fence in Fig. 5 is one
object and we obtain an outer-contour, while if it was segmented
into several objects, a principal curve would be obtained for each
individual pole.

In this work we have focused on static scenes, and left dynamic
aspects of movement for future work. For example, moving objects
can form subjective curves over time due to visual persistence—our
mind keeps track of previous positions and traces imaginary paths
over time. It would be interesting to investigate modeling such dy-
namic subjective curves for improved animation quality and appeal.
In particular, liquids have to this day little artistic guidance, and we
could envision using flow curves to dynamically guide the surface
over time, as to form visually pleasing imaged shapes (or paths).

We believe that our characterization of flow curves as constraints
over feature subjective curves in the scene opens new opportunities
beyond scene deformation. For instance, the same constraints could
be used to guide the modeling or lighting of a scene. For exam-
ple, a procedural modeling algorithm could use our constraints to
generate objects whose SEcurves match user-specified flow curves
through shading control.

9. Conclusion

We introduced a new sketch-based interface called Flow Curves
that provides intuitive ways of deforming whole scenes for visual

coherence. With our interace, the user can more directly and effi-
ciently design and edit the movement of a scene, simply by sketch-
ing flow curves, or sketching a circle center-point. Our direct defor-
mation method requires little to no manual setup time and preserves
the intrinsic shape of objects together with the initial objects place-
ment layout. We demonstrated that our approach takes considerably
less time to operate than current modern 3D digital tools, which re-
quire setting up diverse deformers and performing multiple edits
from different view-points.

Acknowledgements

This project has received funding from the European
Union’s Horizon 2020 research and innovation program

under the Marie Sklodowska-Curie grant agreement No 642841.
We would like to thank the artists Maurizio Nitti and Alessia Marra
for their useful input on the project and their help making results.
We would also like to thank the BlendSwap users OliverMH and
pndrdm for respectively the rocks and fountain models in scene 1.

References
[ATC∗08] AU O. K.-C., TAI C.-L., CHU H.-K., COHEN-OR D., LEE

T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27,
3 (2008), 44:1–44:10. 2

[BMSG09] BAILEY R., MCNAMARA A., SUDARSANAM N., GRIMM
C.: Subtle gaze direction. ACM Trans. Graph. 28, 4 (2009), 100:1–
100:14. 2

[BPWG07] BOTSCH M., PAULY M., WICKE M., GROSS M.: Adaptive
space deformations based on rigid cells. Computer Graphics Forum 26,
3 (2007), 339–347. 3

[BSCS07] BROSZ J., SAMAVATI F. F., CARPENDALE M. S. T., SOUSA
M. C.: Single camera flexible projection. In Proceedings of the 5th In-
ternational Symposium on Non-photorealistic Animation and Rendering
(2007), pp. 33–42. 3

[But02] BUTTON B.: Nonlinear Editing: Storytelling, Aesthetics, and
Craft. CMP Books, 2002. 1

[BW76] BURTNYK N., WEIN M.: Interactive skeleton techniques for
enhancing motion dynamics in key frame animation. ACM Transactions
on Graphics (TOG) 19, 10 (1976), 564–569. 2

[CAA10] CARROLL R., AGARWALA A., AGRAWALA M.: Image warps
for artistic perspective manipulation. ACM Trans. Graph. 29, 4 (2010),
127:1–127:9. 3

[CDF∗06] COLE F., DECARLO D., FINKELSTEIN A., KIN K., MOR-
LEY K., SANTELLA A.: Directing gaze in 3d models with stylized fo-
cus. In Proceedings of the 17th Eurographics Conference on Rendering
Techniques (2006), pp. 377–387. 2

[CG97] COHEN S. D., GUIBAS L. J.: Partial matching of planar poly-
lines under similarity transformations. In Proceedings of the Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms (1997), pp. 777–
786. 7

[CS04] COLEMAN P., SINGH K.: Ryan: Rendering your animation non-
linearly projected. In Proceedings of the 3rd International Symposium
on Non-photorealistic Animation and Rendering (2004), pp. 129–156. 3

[CSB∗05] COLEMAN P., SINGH K., BARRETT L., SUDARSANAM N.,
GRIMM C.: 3d screen-space widgets for non-linear projection. In Pro-
ceedings of the 3rd International Conference on Computer Graphics
and Interactive Techniques in Australasia and South East Asia (2005),
pp. 221–228. 3

[DIC∗03] DAVIS J., IGARASHI M., CHUANG E., POPOVIC’ Z.,
SALESIN D.: A sketching interface for articulated figure animation.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

L. Ciccone, M. Guay, R. Sumner / Flow Curves

Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2003), 320–328. 2

[GCR13] GUAY M., CANI M.-P., RONFARD R.: The Line of Action: an
Intuitive Interface for Expressive Character Posing. ACM Transactions
on Graphics 32, 6 (2013). 2

[Gla13] GLATSTEIN J.: Formal Visual Analysis: The Elements & Princi-
ples of Composition. 2013. 2

[HMC∗15] HAHN F., MUTZEL F., COROS S., THOMASZEWSKI B.,
NITTI M., GROSS M., SUMNER R. W.: Sketch abstractions for charac-
ter posing. In Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (2015), pp. 185–191. 2

[Hor83] HORN B. K. P.: The curve of least energy. ACM Trans. Math.
Softw. 9, 4 (1983), 441–460. 2

[HQ03] HUA J., QIN H.: Free-form deformations via sketching and ma-
nipulating scalar fields. In Proceedings of the Eighth ACM Symposium
on Solid Modeling and Applications (2003), pp. 328–333. 2

[IMH05] IGARASHI T., MOSCOVICH T., HUGHES J. F.: As-rigid-as-
possible shape manipulation. ACM Trans. Graph. 24, 3 (2005).

[KG05] KHO Y., GARLAND M.: Sketching mesh deformations. In Pro-
ceedings of the 2005 Symposium on Interactive 3D Graphics and Games
(2005), pp. 147–154. 2

[KSvdP09] KRAEVOY V., SHEFFER A., VAN DE PANNE M.: Modeling
from contour drawings. In Proceedings of the 6th Eurographics Sympo-
sium on Sketch-Based Interfaces and Modeling (2009), pp. 37–44. 2

[KWT88] KASS M., WITKIN A., TERZOPOULOS D.: Snakes: Active
contour models. International Journal of Computer Vision 1, 4 (1988),
321–331. 2

[LCWCO10] LIU L., CHEN R., WOLF L., COHEN-OR D.: Optimizing
photo composition. Computer Graphics Forum 29, 2 (2010), 469–478.
2

[LMLF15] LIU T., MCCANN J., LI W., FUNKHOUSER T.:
Composition-aware scene optimization for product images. Com-
put. Graph. Forum 34, 2 (2015), 13–24. 2

[MDS09] MI X., DECARLO D., STONE M.: Abstraction of 2d shapes
in terms of parts. In Proceedings of the 7th International Symposium on
Non-Photorealistic Animation and Rendering (2009), pp. 15–24. 2

[MJBF02] MILLIRON T., JENSEN R. J., BARZEL R., FINKELSTEIN A.:
A framework for geometric warps and deformations. ACM Trans. Graph.
21, 1 (2002), 20–51. 2

[MTLT88] MAGNENAT-THALMANN N., LAPERRIÈRE R., THALMANN
D.: Joint-dependent local deformations for hand animation and object
grasping. In Proceedings on Graphics Interface ’88 (1988), pp. 26–33.
2

[Mum94] MUMFORD D.: Elastica and computer vision. In Algebraic
Geometry and its Applications (1994), pp. 491–506. 2

[MZL∗09] MEHRA R., ZHOU Q., LONG J., SHEFFER A., GOOCH A.,
MITRA N. J.: Abstraction of man-made shapes. ACM Trans. Graph. 28,
5 (2009), 137:1–137:10. 2

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-OR D.: A
sketch-based interface for detail-preserving mesh editing. ACM Trans.
Graph. 24, 3 (2005), 1142–1147. 2

[OBP∗13] ÖZTIRELI A. C., BARAN I., POPA T., DALSTEIN B.,
SUMNER R. W., GROSS M.: Differential blending for expres-
sive sketch-based posing. In Proceedings of the 2013 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2013). 2

[OEYK12] ORBAY G., ERSIN YÜMER M., KARA L. B.: Sketch-based
aesthetic product form exploration from existing images using piecewise
clothoid curves. J. Vis. Lang. Comput. 23, 6 (2012), 327–339. 3

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Proceedings of the Fifth Eurographics Symposium on Geometry
Processing (2007), pp. 109–116. 3

[SCOL∗04a] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M.,
RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In Symposium
on Geometry Processing (2004), vol. 71, pp. 175–184. 3

[SCOL∗04b] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA M.,
RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In Proceedings of
the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Pro-
cessing (2004), pp. 179–188. 7

[SDC09] SÝKORA D., DINGLIANA J., COLLINS S.: As-rigid-as-
possible image registration for hand-drawn cartoon animations. In Pro-
ceedings of the 7th International Symposium on Non-Photorealistic An-
imation and Rendering (2009), pp. 25–33. 3

[SF98] SINGH K., FIUME E.: Wires: A geometric deformation tech-
nique. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques (1998), pp. 405–414. 2

[Sil85] SILVERMAN B.: Some aspects of the spline smoothing approach
to nonparametric regression curve fitting (with discussion). Journal of
the Royal Statistical Society, Ser.B 47 (1985), 1–52. 4

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deformation of
solid geometric models. SIGGRAPH Comput. Graph. 20, 4 (1986), 151–
160. 2

[SSP07] SUMNER R. W., SCHMID J., PAULY M.: Embedded deforma-
tion for shape manipulation. ACM Trans. Graph. 26, 3 (2007). 3

[TZCO09] TAGLIASACCHI A., ZHANG H., COHEN-OR D.: Curve
skeleton extraction from incomplete point cloud. In ACM SIGGRAPH
2009 Papers (2009), pp. 71:1–71:9. 2

[Ull76] ULLMAN S.: Filling the gaps: The shape of subjective contours
and a model for their generation. Biological Cybernetics (1976). 2

[Wer38] WERTHEIMER M.: Laws of organization in perceptual forms.
1938. 2

[WJ97] WILLIAMS L. R., JACOBS D. W.: Stochastic completion fields:
A neural model of illusory contour shape and salience. Neural Comput.
9, 4 (1997), 837–858. 2

[ZNA07] ZIMMERMANN J., NEALEN A., ALEXA M.: Silsketch: Au-
tomated sketch-based editing of surface meshes. In Proceedings of the
4th Eurographics Workshop on Sketch-based Interfaces and Modeling
(2007), pp. 23–30. 2, 7

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.

