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Abstract

Data-driven approaches for hand pose estimation from
depth images usually require a substantial amount of la-
belled training data which is quite hard to obtain. In this
work, we show how a simple convolutional neural network,
pre-trained only on synthetic depth images generated from
a single 3D hand model, can be trained to adapt to unla-
belled depth images from a real user’s hand. We validate
our method on two existing and a new dataset that we cap-
ture, both quantitatively and qualitatively, demonstrating
that we strongly compare to state-of-the-art methods. Ad-
ditionally, this method can be seen as an extension to ex-
isting methods trained on limited datasets, which helps on
boosting their performance on new ones.

1. Introduction
Recent approaches in 3D hand pose estimation from a

single depth image are predominantly based on convolu-
tional neural network architectures [29, 15, 32, 6, 22, 30],
typically requiring labelled data for training. While the
accuracy of such methods has been disputed on a limited
number of available datasets that are applicable to learning-
based approaches, such as [29, 2, 23], the main problem
seems to shift to a large degree towards scarcity of data
labelling (e.g. 3D joint positions). This has been particu-
larly demonstrated in [31], where simply having a bigger
and more complete labelled dataset yields much better esti-
mation results, but also in [8], where it is shown that just us-
ing nearest-neighbor search methods in the pose data space
can already outperform many of the existing, CNN-based
methods. Multiple ways of creating labelled data have been
presented in the past, usually on the expense of additional
set-up environments and man-work. For instance, labels
have been generated via optimization [29], utilizing mul-
tiple cameras, integrating special sensors [31] or in a semi-
supervised way [14, 25]. This is also reflected by the limited
amount of public datasets available.
Next to convolutional data-driven approaches, there have

been several generative, model-driven ones that perform it-
erative optimization. For instance, [13, 20, 24, 26, 27] opti-
mize for point cloud correspondences while [17, 21, 29, 18]
attempt to find a good pose, by iteratively rendering many
synthetic depth images and comparing them to the input
image. Such approaches usually perform better on unseen
poses, as compared to data-driven ones, when applied to
poses quite dissimilar from the ones in training datasets. A
further advantage is independence from a big labeled train-
ing set. However, such methods usually require temporal
information and a good initialization (typically classifying
them as tracking methods), and are computationally more
expensive.
Inspired by such optimization approaches and haunted by
the problem of creating labelled data, we propose a novel
method that bypasses the expensive effort of labelling
ground truth data, while still leveraging from the speed of
purely data-driven approaches, to achieve accurate 3D hand
pose predictions.
To this end, we propose a pipeline, with the help of which
pre-trained convolutional models (here on a purely syn-
thetic dataset) can be refined to unseen and unlabelled depth
images. This allows to boost existing data-driven meth-
ods, which are mainly optimized for the small amount of
available training datasets, to real-world scenarios where la-
belled data is hard to obtain.
To summarize, the paper contributions are:

• We demonstrate how to train a CNN-based 3D hand
pose estimation method, on unseen and unlabelled
depth images, avoiding the need for annotated data.

• We propose a new training pipeline that can accurately
estimate 3D hand pose with the ability to refine itself
on unlabelled depth images, using a depth loss compo-
nent with a physical and collision regularizer.

• We demonstrate, through extensive evaluations, the ad-
vantage of utilizing such a method to enhance estima-
tions of a simple candidate CNN model.
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Figure 1. Overview of the training pipeline. Given a depth image as input, a base CNN model predicts the hand pose θ. Given θ, we
calculate a loss consisting of a collision, physical and depth component. During training, we update the weights of the base model, as well
as P , a point cloud that represents the hand shape and gets iteratively updated to the real one. Since we can calculate the loss using only
the input image, θ and P , our model can be trained without labelled data.

2. Related work

Generative, Optimization-Based Approaches. Many
methods in this category utilize gradient-based optimization
approaches and attempt to solve an iterative closest point
(ICP) problem. In this context, Melax et al. [13] formulate
the hand optimization as a constrained rigid body problem.
Schroder et al. [20] suggest optimizing in a reduced param-
eter space and Tagliasacchi et al. [24] combine previous
results, to show that ICP in combination with temporal,
collision, kinematic and data-driven terms can be utilized
to track with high robustness and accuracy. Following up
on this, Sharp et al. [21] enhance this approach utilizing
a smooth model and Tkach et al. [27] present a new hand
model based on sphere meshes.
A non-gradient, particle swarm optimization (PSO) ap-
proach has been suggested by Oikonomidis et al. [17],
minimizing “the discrepancy between the appearance and
3D structure of hypothesized instances of a hand model
and actual hand observations”. This requires extensive
rendering of an explicit hand model in various poses.
Tompson et al. [29] use an (offline) PSO based approach to
find the ground truth for the NYU dataset [29]. Since PSO
depends highly on a good initialization, Gian et al. [18]
increase its robustness by combining it with ICP, while
Taylor et al. [26] suggest minimizing a truncated L1 error
norm between the synthesized and real depth image while
also rendering a more realistic-looking mesh through linear
blend skinning (LBS) [11]. In general, these techniques
focus on tracking, requiring a good initialization or GPU
implementations, while our method focuses on single depth
image 3D pose estimation and can run real-time on CPU.

Discriminative, Data-Driven Approaches. Recently,
many methods based on convolutional neural networks
(CNNs) have been proposed. Oberweger et al. [15] eval-
uate different CNN architectures and propose a pose prior
by adding a bottleneck layer, showing that a projection to
a reduced subspace before the final regression boosts the
prediction performance. Zhou et al. [32] propose a forward
kinematic layer to create a loss function on the joint posi-
tions while predicting rotation angles of the joints. Using
those angles, a physical loss is introduced, which penalizes
angles outside a specified range, similar to what we do. In-
stead of directly using depth images as input, Ge et al. [6]
show that projecting the point cloud onto three orthogonal
planes and feeding the projections into three different CNN-
s enhances the prediction performance. Deng et al. [3] con-
vert the depth map to a 3D volumetric representation first,
and then feed it into a 3D CNN to produce the pose in 3D,
requiring no further processing.

Hybrid Methods. Often, neural networks are used as
an intermediate prediction step which requires optimization
afterwards. Tompson et al. [29] predict various key posi-
tions and optimize for the actual pose using inverse kine-
matics. Ye et al. [30] combine a spatial attention mecha-
nism and PSO in a cascaded and hierarchical way. Sinha
et al. [22] utilize a CNN to reduce the dimensionality of
the depth input and optimize for the final pose via a ma-
trix completion approach considering also temporal infor-
mation. Oberweger et al. [16] use a deep generative neural
network to synthesize depth images, and a separate opti-
mization network to iteratively correct the pose predicted
by a third convolutional model.



Similary in spirit to the PSO approaches, starting from a
rigged 3D hand model, we synthesize depth images in order
to compare to the input depth images. We, however, do not
do this externally, but rather integrate it in a conventional
gradient based learning architecture, similar to [12, 1].
Our base CNN architecture initially predicts joint rotations
from a base reference pose, similar to [32]. This allows us to
completely reconstruct the articulated hand pose, whereas
predicting just joint positions needs a further optimization
step to do the same. Our method builds on top of [32], since
we also calculate a forward kinematic chain from the pre-
dicted pose and we also utilize a physical loss (Sec. 3.5).
However, we go a step further and do not minimize a loss
on the joint positions but on the actual hand depth image,
enabling us to adapt to unlabelled images.
At first glance our method might appear to be similar to
the feedback loop proposed by Oberweger et al. [16], but
there are some important differences we want to emphasize
to avoid confusion. Oberweger et al. [16] synthesize depth
images too, however such images are utilized to iteratively
optimize a pose prediction during testing, whereas we op-
timize our base model during training only, by backprop-
agating errors on depth images. Our prediction employs
only a single forward pass through the CNN. Furthermore,
our method is completely independent of labelled real depth
images, whereas [16] highly depends on well labelled data
to adapt to a dataset (e.g. training on ICVL fails because
of annotation errors). Our method allows for simple end-
to-end training, but the method from [16] requires to train
three different neural networks. We will elaborate more on
the differences between the state-of-the-art methods in the
results section (Sec. 4.5).
All in all, our method could be seen as a network exten-
sion to data-driven methods, in order to boost predictions by
training at a minimal cost (from unlabelled depth data). Our
goal thus, slightly differs from that of most of the above-
mentioned works, which mainly focus on maximising pose
estimation accuracy on available datasets.

3. Method

3.1. Overview

The overview of our method is depicted in Fig. 1. The
main goal is to estimate the 3D hand pose, given a single
depth image, utilizing an end-to-end CNN. Specifically we
attempt to tackle cases, where the depth input data space
does not necessarily represent the training space, due to e.g.
variation in hand shape, pose space and sensor noise. We
propose to achieve this by refining a base convolutional neu-
ral network on unlabelled depth images. The base model
is an AlexNet-like [10] architecture (Sec.4) and pretrained
purely on synthetic data to provide a (rough) pose estimate
θ. To train on unlabelled data, we propose a combined loss

function, containing a depth (Sec.3.3), collision (Sec.3.4)
and a physical component (Sec.3.5), as shown in Eq.1 :

L = Ldepth(θ, P ) + Lcoll(θ) + Lphys(θ) (1)

where P is a point cloud representation and estimate of
the hand shape in a neutral pose, that gets iteratively adapted
to the real one during training.
The depth loss adapts the base model to reduce the L1
error norm between a synthesized depth image, generated
through applying the prediction θ to an updated pointcloud
P of a rigged hand model, and a second synthesized depth
image based only on the input depth image. The collision
and physical loss can be thought as regularizers that penal-
ize unnatural looking poses.

3.2. Base CNN Model

We start by training a CNN model which can predict a
pose θ from a depth image D. To represent θ, we adopt
quaternions, however euler angles, rotation matrices or sim-
ilar structures could possibly be utilized too. Without loss
of generality, we chose our base network to be based on the
AlexNet architecture [10], similar to Zhou et al. [32].
In order to initially train the network, we generate a lot of
synthetic training data (Sec.4), consisting of pairs of depth
images and poses in our format of θ. The data is gener-
ated from a rigged 3D hand model, with 16 control joints,
as depicted in Fig.2 (1). Given the depth images of the syn-
thetic training data, we train the base model to minimize the
mean squared error between the pose from our dataset and
the predicted pose.
Our trained CNN based model could be replaced by any
other model that can predict a pose given a depth image.
The only constraint in this case, is that θ must be informa-
tive enough to calculate a forward kinematic chain, yielding
the exact information on how each joint transforms to the
predicted pose (see Sec. 3.3.1).
The base network is only supposed to give a rough initial
prediction. The following components enable it to get re-
fined by training with unlabelled data.

3.3. Depth Component

In order to assess the prediction accuracy on unlabelled
data, we opt at comparing the input depth image D to a
synthesized depth image from our predicted pose θ and
a pointcloud P sampled from the hand model. Hence
rendering and synthesis of depth images given θ becomes
a necessity, which we achieve by imitating the calculations
of a common render application and utilizing linear blend
skinning (LBS) [11] to transform the points according to θ.



Figure 2. Overview of the different kinds of formats and hand images we process. From left to right we show (1) our rigged hand model
with its 16 joints (2) the uniformly sampled point cloud P of the rigged mesh (3) a rendering after transforming P using the render
component (Sec.3.3.1) (4) a typical noisy depth image input to the base CNN model. (5) a rendering of points sampled from (4). (6) the
absolute difference between (3) and (5)

3.3.1 Point Transformation

Forward Kinematics. The point transformation behaves
similar to a render application. This includes the forward
kinematic chain which yields for each joint the transforma-
tion matrix, transforming from the model space of a base
pose into the model space of the skinned pose θ. This is
similar to [32] which we refer to for details. Please note
that this step is differentiable, since only matrix multiplica-
tions and trigonometric functions are required. We denote
with M = [M1, . . . ,Mm] those transformation matrices,
where m is the number of joints used (see supplementary
for details).
Linear Blend Skinning. In contrast to [32] though, we are
not just transforming each joint position to its final position,
but a larger set of points P = [p1, . . . , pn], where each point
is associated with one or more joints. Let wi,j be the weight
which defines how much the point pi is bound to the joint j.
Linear blend skinning (LBS) [11] f skin(P,M) transforms
each point by a linear combination of the matrices Mj ac-
cording to its weights:

p̂i := f skini (P,M) =

m∑
j=1

wi,jMjpi (2)

We note that this method is not just differentiable with re-
spect to M , which is important to allow backpropagation to
the base model, but also with respect to P . This allows us
to relax the static hand model to a dynamic one, that gets
updated during training to automatically adapt to the hand
shape. Hence, the 3D hand model can be adapted to the real
hand shape by iteratively minimizing their projected differ-
ence (Sec.3.3.2).

3.3.2 Rendering

Instead of using triangles as primitives, that involve a dif-
ficult rasterization step and produce an image which is not
differentiable, we make use of a method based on [1] to ren-
der a point cloud in a differentiable way.
Instead of transforming the vertices of the model, we actu-
ally transform a point cloud P . P and its weights W are

once uniformly sampled from the hand model, which acts
therefore only as a hand shape prior.
To render the point cloud, we take the point with the mini-
mal z-value for each of the image coordinates (i, j). Instead
of picking individual widely spaced points, in order to make
it differentiable and obtain a nice surface, we weight the z-
value of each point with a 2D basis function φ around its
position. Let pi = [pi,x, pi,y, pi,z]. The rendered depth im-
age approximation is defined as:

fdepthi,j (P ) = max
k

(depthi,j(pk)) (3)

where we assume the points to be in the [0, 1] range and the
z-values to represent the depth with respect to the camera:

depthi,j(p) = (1− pz)φi,j(p) (4)

We choose φ ∈ C1 to have finite spatial support of a circle
with radius r. Let dist2i,j(p) = (j − px)2 + (i − py)2. We
can define φ as:

φi,j(p) =

(
1−

(
disti,j(p)

r

)2
)2

1dist2i,j(p)<r2 (5)

Even though the rendered images look like depth images,
there is still a visible disparity between the synthesized and
real images, as it can be seen in between Fig.2 (3) and (4).
Therefore we also sample a point cloud PD from the real
depth image D and render it using fdepth, as in Fig.2 (5).
The actual loss taken in the end is the L1 norm of the differ-
ence between both synthesized images, Fig.2 (3) and (5):

Ldepth =
∑
i,j

|fdepthi,j (f skin(P,M))− fdepthi,j (PD)| (6)

3.4. Collision Component

Inspired by [24] and [13], we also attempt to avoid finger
interpenetration by penalizing over a self-collision approx-
imation on the hand mesh. We approximate the hand with
cylinders and check for each cylinder if a joint position is in-
side. Let B = [b1, . . . bm] denote the joint positions calcu-
lated using the joint transformation matrices M (see 3.3.1).



Let C ⊂ N×N be all joint indices paired with their parent.
Hence, each pair (i, j) ∈ C describes a bone. We define the
loss as:

Lcoll =
1

m

∑
(i,j)∈C

m∑
k=1

1i6=k,j 6=kf
coll(bi, bj , bk) (7)

where f coll(a, b, p) is the penetration depth of a point p into
a cylinder with the endpoints a and b and a fixed radius. The
radius could be determined using the point cloud P of our
hand shape but we obtained reasonable results by choosing
a fixed value.

3.5. Physical Component

The physical loss is defined similarly to [32] and [24].
We first transform our pose θ (which we represent in quater-
nions) to euler angles using the function ϕ(θ). In euler an-
gles we can specify a valid range [ϕ, ϕ̄] for each angle. The
bounds are determined manually by looking at the model
while varying the pose (please see supplementary). The loss
penalizes poses outside the specified range:

Lphys(θ) = max(ϕ− ϕ(θ), 0) + max(ϕ(θ)− ϕ̄, 0) (8)

4. Experiments and Results
4.1. Architecture and Training Details

We utilize a slightly modified AlexNet [10] CNN archi-
tecture as our candidate base model. Similar to [4, 5], we
adopt it for regression, however we experienced that remov-
ing one of the two fully connected layers achieves a faster
learning with similar performance. Hence, we only have
one fully connected layer with 4096 neurons using a ReLU
activation function. Before linearly regressing to θ, we add
a dropout layer with (keep) probability 0.75. For details on
the architecture please check the supplementary material.
As input we expect a batch of 120 × 120 pixels depth im-
ages, with the depth values scaled in a [0, 1] range. The hand
is cropped and centered, by padding on the sides when nec-
essary such that the aspect ratio is preserved. We choose to
regress to quaternions and therefore θ ∈ R16×4, since there
are 16 joints.
The network is pre-trained on synthetic depth images with
randomly generated poses. The poses are sampled from a
feasible angle range and collisions are avoided utilizing a
similar approximation as in Sec. 3.4.
We train the base model on synthetic data until convergence,
with the Adam Optimizer [9] and a learning rate of 10−3.
The complete network is trained on unlabelled data with a
learning rate of 10−5, for 10 epochs for each training set.
We choose a batch size of 200 and 1000 for training on the
labelled synthetic and unlabelled real data respectively.
The complete pipeline is implemented in tensorflow. Lin-
ear blend skinning, the rendering and collision function are

implemented in separate custom operations utilizing cuda
kernels to provide high efficiency for offline training (please
see supplementary for more details).

4.2. Datasets

We evaluate our method on two public datasets (NYU
and ICVL) and a separate one created by us. The NYU [29]
dataset is recorded using a Microsoft Kinect sensor and pro-
vides therefore, in comparison to the other dataset, very
noisy images. The training set has 72757 images from one
person and three simultaneous views. The test set is a se-
quence of 8252 images from two persons. The ground truth
annotations are fitted with an offline PSO approach and con-
sist of 36 3D spatial hand features per frame. Similar to
previous works [32], we also use only a subset of 16 3D po-
sitions for evaluation.
The ICVL dataset [2] is less noisy due to the usage of the In-
tel Creative Interactive Gesture Camera. Two test sequences
from two different persons with a total of 1596 frames are
provided for testing and about 180K frames for training
from several persons. The ground truth of 16 3D bone cen-
tre locations is obtained utilizing the tracking method pro-
posed by Melax et al. [13]. We segment the images of NYU
and ICVL by cutting out a padded block around the 3D an-
notations. Furthermore, it is important to mention that our
3D joint positions, that are dependent on our fixed 3D model
skeleton, deviate a lot from the ones used in both datasets,
which is important for a fair comparison.
Our own dataset is created using the Intel RealSense Cam-
era and consists of 2000 depth images for testing and 50000
depth images for training, from only one person wearing a
black wristband. This allows for a simple brightness based
segmentation to cut out the wrist, which makes it easy to
separate the foreground from the background. We also cap-
ture a color image for each frame for qualitative compari-
son. Note that we do not provide any annotations. We com-
pare to different methods by computing ROC curves, that
denote the fraction of frames below a maximum 3D join
prediction error.

4.3. Feasibility of Learning Hand Pose and Shape

It has been shown in [12], how to estimate the human
body shape from depth (and color) image differences using
a gradient based method, but except for the concurrent opti-
mization based approaches on differentiable offline [19] and
online [28] calibration for hands, to the best of our knowl-
edge there exist no CNN based works in the field of hand
pose estimation. In methods utilizing PSO [17, 29, 18, 21],
we have seen that an error metric on depth images is mean-
ingful enough to intelligently sample, compare and prune
candidate poses, however the gradient idea has not been ex-
ploited. Encouraged by such results, we show in two exper-
iments that we can optimize for the hand pose and shape.



Figure 3. Firstly, we overfit our model on single depth images to give evidence that learning the pose without any annotations is possible.

Hand Pose Optimization. In our first experiment we
attempt to overfit our model on single images, in order to
show that reasonable results are obtainable despite our loss
function being highly non-convex. We take images from
our training set and train the network for 70 epochs (update
steps). In Fig. 3, for each block we show the initial pre-
diction of our base model (on top) and the prediction after
training (at the bottom). We typically obtain good results,
where the error between the depth images is minimized, ex-
cept for cases when the initial prediction is too far from the
actual pose, impeding convergence to a desired minimum.

Hand Shape Optimization. We also explore whether
the point cloud P is adequately adapted to the hand shape.
For that, we perform the same experiment as before, how-
ever we keep the weights of the model fixed, such that only
P gets updated. As shown in Fig. 4, all our test runs con-
verge slowly to an optimum which almost completely van-
ishes the loss over the synthesized depth images.

4.4. Self Comparison

Given the previous results on single images, it is impor-
tant to demonstrate that our model can also adapt to com-
plete datasets. Our attempt is not to overfit to any dataset,
but generalize to similar inputs by adapting to the sensor
noise and hand shape in the training set. To show this, we
start with a quantitative self comparison on the NYU [29]
and ICVL [2] datasets. We train our base model twice, un-
supervised for each of the training sets, where first we use
the depth component only and then all losses altogether.
The results on the validation set are shown in Fig. 5. We can
see a significant improvement in both datasets by training
with the depth component only. Incorporating the physical
and collision component gives only a very small improve-
ment on ICVL, but a second big improvement on NYU.
This illustrates that when learning from noisy data, we are
more dependent on prior information, e.g. by enforcing non-
self-intersection and physical constraints. The images of
ICVL, however, are mostly of higher quality, allowing to

Figure 4. In a second experiment we optimize for the hand point
cloud P only and demonstrate how the updates converge close to
a global optimum. See video for all the in-between steps.

infer this information already from the depth image.
In Fig. 6, we show a qualitative self comparison on two
random pose predictions from our dataset, before and af-
ter training. A more accurate 3D pose of the real hand is
observed in the latter case. To give quantitative evidence,
we train our model on our own training data for 10 epochs
and show in Fig. 7, that the model generalizes well to the
validation set. We also notice that the variance drops from
0.0035 to 0.0026, indicating a more stable estimation as
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Figure 7. Distribution of the MSE between the synthesized depth
images (see (3) and (5) in Fig 2) over the frames of our validation
set, before and after training on our training set. The vertical lines
show the mean values before (right) and after prediction (left).

also backed up by visual inspection, where the jitter in video
sequences gets reduced (please see supplementary video).

4.5. Comparison to State-of-the-art

Despite the fact that our target is to refine an initial CNN
based model and adapt it to unlabelled depth data, we also
compare to state-of-the-art methods that attempt to estimate
the 3D pose from a single depth image on standardized
datasets.
To start, we give some more context about the methods we
compare to and claim that a direct comparison is quite dif-
ficult. We compare to REN [7], DeepPrior [15] and Deep-
Model [32] on the NYU and ICVL dataset. Additionally
we compare to Feedback [16] and LRF [2] on the NYU and
ICVL dataset respectively.
All these methods utilize the ground truth annotations of the
training data to refine their models, whereas we deliberately

do not make use of them. Furthermore, except for [15], the
rest of the methods attempt to minimize the difference be-
tween the given annotations and their predictions. The feed-
back loop, proposed by Oberweger et al. [15], minimizes a
loss based on the depth images, as we do. Instead of a point
transformation and rendering architecture though, they syn-
thesize depth images (given a pose) via a generative CNN.
This has the advantage of not needing an explicit model, as
we do, but on the other hand they show a high dependency
on good annotations, whereas we are completely indepen-
dent of them.
Since we do not optimize for joint positions and use a dif-
ferent model than the ones that have been used for creat-
ing the annotations in the NYU and ICVL dataset, we ob-
served an error between our joint position prediction and
the ground truth, even for accurate predictions, as evaluated
by the depth image differences. Therefore, a bias can be
assumed in our joint position prediction. We estimate this
bias as the minimum error for each joint, over the whole
training set, between our joint position predictions and the
ground truth. The evaluations on the validation sets are plot-
ted in Fig. 8, where a second curve for our method is added,
showing the error of the same prediction with the bias sub-
tracted. Since this bias might be too optimistic, we believe
that our real joint prediction error should be somewhere be-
tween the two curves, showing that our method compares
closely to several state-of-the-art methods on both datasets.

4.6. Method Speed

We conducted our experiments on an Intel i7 860 (from
2010), 8GB of RAM with an Nvidia Geforce GTX 1060.
A forward pass through the network for predicting a sin-
gle input image takes 3.5ms, which is practically real-
time. Training unsupervised for 10 epochs, as we did, takes
around 30 minutes.

5. Discussion and Conclusions
Through quantitative and qualitative evaluations, we

showed that utilizing our method, a base convolutional
model trained purely on synthetic data can be automatically
refined to new unlabelled depth images.
This method could be utilized both as an extension to pre-
vious data-driven methods (under minimal constraints), as
well as a stand alone method for 3D pose estimation.
The ability of the network to adapt to new poses and shapes,
while running real-time on CPU, unlocks further applica-
tions, such as personalized gesture recognition or hand-
tracking, which could be integrated into smart-phones.
Even though we tackle only single depth estimation, in the
supplementary videos we show that it also applies to track-
ing (under minimal jittering).
However, this method has limitations, too. We assume that
we adapt the base CNN to a single hand shape only. For op-



Figure 6. Two qualitative examples from our validation set are shown, after training with 50k images from our training set without
annotations. For each block, top row shows a 3D rendering of our hand model in the predicted pose before (left) and after training
(right). For visual comparison, we demonstrate the RGB input image (center), which is not utilized by this method. The bottom row shows
the absolute depth errors of the poses from above (left and right) (see Fig. 2 for details) and the input depth image (center).
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Figure 8. Comparison to state-of-the-art methods on the NYU [29] and ICVL [2] dataset. For one of our curves (dashed), we remove the
bias introduced from the missmatch between our hand model and the ones used as groundtruths for each dataset.

timal performance, we require therefore a consistent hand
shape and also a good hand segmentation. In order to cope
with that, we could potentially extend our model to predict
the hand shape for each input image, similar to what we do
for the pose estimation. This is possible since our current
model internally adapts to a hand shape, in order to help the
pose refinement.
We also believe that retraining the network with images of a
new user is a possible option, if a personalized hand tracker
is desired, since training with 50K images takes only about
30 minutes, when trained from scratch.
We require our base CNN to make reasonable predictions,
however we have shown that training a CNN merely on syn-

thethic depth data yields sufficient initial estimations.
Even with some of the assumptions violated (e.g. non-
consistent segmentation when using ICVL or NYU, label
mismatching), we could show comparable results to state-
of-the-art on two public datasets.
Lastly, we envisage that such method could be applied,
without loss of generality, to human pose estimation tasks
under minimal changes to the underlying 3D model.
Acknowledgement. We thank Riccardo Roveri and Lukas
Rahmann for their insights on the rendering function in
Sec.3.3.2 and Andrea Tagliasacchi for his overall comments
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