
An Extended Cut-Cell Method for Sub-Grid Liquids Tracking with
Surface Tension

YI-LU CHEN, ETH Zurich
JONATHAN MEIER, ETH Zurich
BARBARA SOLENTHALER, ETH Zurich
VINICIUS C. AZEVEDO, ETH Zurich

Fig. 1. Our cut-cells solver allows detailed fluid simulation in coarse regular grids, handling surface tension, complex obstacles, and thin liquid sheets.

Simulating liquid phenomena utilizing Eulerian frameworks is challenging,
since highly energetic flows often induce severe topological changes, cre-
ating thin and complex liquid surfaces. Thus, capturing structures that are
small relative to the grid size become intractable, since continually increas-
ing the resolution will scale sub-optimally due to the pressure projection
step. Previous methods successfully relied on using higher resolution grids
for tracking the liquid surface implicitly; however this technique comes
with drawbacks. The mismatch of pressure samples and surface degrees of
freedom will cause artifacts such as hanging blobs and permanent kinks
at the liquid-air interface. In this paper, we propose an extended cut-cell
method for handling liquid structures that are smaller than a grid cell. At
the core of our method is a novel iso-surface Poisson Solver, which con-
verges with second-order accuracy for pressure values while maintaining
attractive discretization properties such as symmetric positive definiteness.
Additionally, we extend the iso-surface assumption to be also compatible
with surface tension forces. Our results show that the proposed method
provides a novel framework for handling arbitrarily small splashes that can
also correctly interact with objects embodied by complex geometries.
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1 INTRODUCTION
Visually compelling liquid phenomena involve thin and complex
water splashes. Fluids split and merge, undergoing through severe
topological changes due to large bodies of water breaking down
into smaller ones, represented by surfaces in which elements’ scale
varies substantially. The dynamic behavior of liquids creates small
intricately connected elements that are challenging to model with
standard regular grid discretizations. Continuously increasing the
resolution until small-scale details are tractable is often expensive
and impractical for most animation scenarios. Additionally, highly
refined grids may require prohibitively small time steps to avoid
instabilities and to correctly preserve details.
Volumetric grids scale poorly when tracking two-dimensional

surfaces and it is common practice to use higher grid resolutions
for tracking the liquid’s implicit representation [Bargteil et al. 2006;
Goktekin et al. 2004] without refining the underlying grid used for
the simulation. The problem with such methods is that sub-grid in-
formation is invisible to the fluid solver, and many artifacts, such as
floating blobs, kinks, and tiny air bubbles can permanently remain
on the liquid surface. Previous works have attempted to solve this
either by surface smoothing [Kim et al. 2009; Wojtan and Turk 2008],
energy minimization [Bojsen-Hansen and Wojtan 2013; Goldade
et al. 2016], or by explicitly coupling the underlying regular repre-
sentation to the liquid surface through meshing [Brochu et al. 2010;
English et al. 2013]. However, these approaches fail to capture the
topologically complex liquid domain in the presence of narrow air
gaps or thin liquid sheets, or require expensive meshing or coupling
algorithms to succeed.
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(a) 16 × 8 × 12 (b) 32 × 16 × 24 (c) 64 × 32 × 48

Fig. 2. A comparison of falling drops with initial state (top) in a coarse fluid simulation using the Ghost Fluid Method (middle), and our method (bottom)
across different resolutions. When the surface tracker is much finer than the pressure grid, details become invisible to the simulation, causing small blobs to
hang in mid air with the Ghost Fluid Method. Our method captures such small details in all three resolutions, correctly modelling splashing liquid blobs.

Thus, we propose an Eulerian fluid solver which captures sub-
grid features such as thin liquid splashes, narrow air spaces and
droplets on regular grids (Figure 2), while still largely conserving
the volumes of the embedded liquids. Since our approach is an ex-
tension of the cut-cells method [Azevedo et al. 2016], it can also
naturally handle liquids interacting with complex obstacles (Fig-
ures 3 and 6). Our method is enabled by a novel Laplacian solver that
handles non grid-aligned Dirichlet boundary conditions. It extends
the traditional Ghost Fluid Method pressure Dirichlet condition at
the liquid-air interface through a novel iso-surface assumption: up
to a pre-specified distance to the boundary, all pressures have the
same value. Thus, only one value will be used to model pressures in
different spatial locations (Figure 7) per cut-cell, reducing the com-
putational burden of modelling potentially highly-detailed liquid
surfaces to a single variable. We show that our method tracks thin
liquid sheets (Figure 11) and narrow gaps (Figure 3), while retaining
the efficiency of Cartesian grids, yielding a second-order accurate
solver and a symmetric positive definite formulation.
The presence of interfacial surfaces forces, such as surface ten-

sion, creates another challenge. The original iso-surface assumption
is no longer valid and we augment our method with an independent
pressure scalar field at the liquid-air interface, decoupling these
pressures from the ones inside the liquid. Our method is computa-
tionally attractive, since the decoupled pressure system relaxes the
usual severe time-step limitations when evaluating liquid surface
tension forces. In summary, the contributions of this paper are:

• Anovel iso-surface Poisson solver capable ofmodellingDirich-
let boundary conditions for complex topologies embedded in

regular grids. The resulting linear system is symmetric posi-
tive definite, while exhibiting second-order accurate pressure
and first-order accurate gradient values (Section 3);

• An extended cut-cells surface tension solver (Section 4);

2 RELATED WORK
Since the pioneering work of Foster and Metaxas [1996], fluids in
Computer Graphics have thoroughly evolved to a mature state and
are widely employed in production pipelines for digital content
creation [Frost et al. 2017; Stomakhin and Selle 2017]. Specific to liq-
uids, interface tracking can be subdivided into implicit [Enright et al.
2002; Foster and Fedkiw 2001] and explicit representations [Wojtan
et al. 2009, 2010]. Implicit liquid tracking uses a level-set function to
represent interfaces in regular grids, while explicit representations
track vertex positions of triangle meshes. Implicit representations
can easily handle topological changes such as merging and split-
ting and are therefore more commonly adopted. The implicit liquid
representation can be constructed from particles [Ando et al. 2012;
Jiang et al. 2015; Zhu and Bridson 2005] or tracked fully in an Euler-
ian setting [Heo and Ko 2010]. Although in this work we adopt an
implicit representation, explicit surface tracking can also be handled
by our cut-cells algorithm.
Adopting higher grid resolutions for surface tracking is a useful

technique to overcome detail loss in implicit representations, and
was firstly employed to model viscoelastic fluids [Goktekin et al.
2004]. Bargteil et al. [2006] combined semi-Lagrangian contour-
ing with adaptive level-sets near surfaces, and impressive liquid
simulations were obtained by super-sampling liquid geometries
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Fig. 3. Liquid flowing through narrow slits using a grid resolution of 64 × 64 × 32. While our method reliably detects all gaps and allows liquid to flow through,
the GFM can only detect slits if they are aligned with the grid cells, leading to fewer and wider gaps. The wider gaps modelled by the GFM will cause the fluid
to incorrectly flow faster through the slits.

with volume-preserving liquid-biased filtering [Kim et al. 2009].
To remove persistent artifacts created by the resolution mismatch
while still keeping interesting mesh details, Bojsen-Hansen and
Wojtan [2013] proposed an energy function embedded in the lower
resolution simulation grid, which can be used to either eliminate
the artifacts via energy minimization or use these errors for sub-
grid simulations. Goldade et al. [2016] further simplified this idea
via Gaussian pyramid filtering and improved the conditions of liq-
uid tracking in narrow-band settings. As an alternative to directly
solving a pressure field in lower dimensions, Ando et al [2015] pro-
posed solving a dimension-reduced linear system, which after one
linear transformation simultaneously approximates the pressure
and enforces the pressures at the liquid–air interface in the higher
dimensions. However, this simplification does not exactly enforce in-
compressibility at the liquid-air interface, contrary to our proposed
approach. Higher resolution surface tracking is also employed not
only for regular grid simulations. Sifakis et al. [2007] developed a
method that embedded a high-resolution point-sampled surface in
a coarse finite element mesh and Wojtan and Turk [2008] modelled
viscoelastic behavior by combining a high resolution surface tracker
with a lower resolution tetrahedral finite element simulator.

Fractional boundaries and cut-cells are employed to embed or ex-
plicitly track sub-grid details in a regular grid solver. Batty et al.
[2007] reformulated the classic pressure projection step as an energy
minimization problem, deriving the resulting boundary conditions
as fractional boundaries. Further work [Ng et al. 2009] identified
this method as not convergent, and an improved boundary han-
dling formulation was proposed to model arbitrary solid geometry
while maintaining a second-order symmetric positive-definite (SPD)
discretization. Stronger two-way coupling between liquids and de-
formables [Zarifi and Batty 2017] and viscous liquids and solids

[Takahashi and Lin 2019] extended previous fractional boundaries
approaches. Cut-cells [Azevedo et al. 2016; Edwards and Bridson
2014] detach distinct regions of the flow separated by boundaries
in a topologically robust way, capturing arbitrarily thin bound-
aries and narrow gaps. Edwards et al. [2014] coupled cut-cells with
a p-adaptive Discontinuous Galerkin method for detailed water
capturing. However, this method is computationally expensive and
complex to implement. Simpler cut-cell methods were used to model
interaction of solids and fluids [Azevedo et al. 2016], while also im-
proving velocity interpolation close to boundaries through Spherical
Barycentric Coordinates [Langer et al. 2006] interpolants. Robustly
generating cut-cells can be a burdensome task, and Tao et al. [2019]
developed an open-source framework for cut-cells creation. Lastly,
topologically accurate finite element methods were also employed
to model deformable bodies [Nesme et al. 2009] and musco-skeletal
[Teran et al. 2005] simulations.

Adaptive refining and meshing. Poor volumetric scaling of 3D
grids for tracking 2D liquid surfaces motivated researchers to de-
velop adaptive simulation algorithms. Octrees can provide efficient
spatial refinement, and were thus used to represent liquids [Losasso
et al. 2004], smoke [Shi and Yu 2004], surface tension [Hong and
Kim 2005], bubbles [Kim et al. 2007], viscous liquids [Goldade et al.
2019] and were tailored for efficiency [Aanjaneya et al. 2017; Setaluri
et al. 2014]. While these methods concentrate variables near the
free surfaces, they break the grid’s regularity, and the discretiza-
tion accuracy has to be sacrificed for maintaining positive-definite
systems. Further work improved the accuracy of gradients on T-
junctions [Batty 2017] and obtained improved SPD discretizations
[Goldade et al. 2019]. Adaptive meshes are not restricted to regular
grids. Several works [Ando et al. 2013; Batty and Houston 2011;
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Batty et al. 2010; Chentanez et al. 2007; Klingner et al. 2006] use
adaptivity in tetrahedral meshes to increase accuracy and preserve
details in regions of interest. Virtual Node Methods [Bedrossian
et al. 2010; Hellrung et al. 2012] are an alternative solution for Pois-
son equations in irregular domains with second order accuracy,
however these methods do no inherently support complex sub-grid
phenomena such as tiny droplets or thin liquid splashes. Chimera
[English et al. 2013] and Arbitrary Lagrangian-Eulerian grids [Lee
et al. 2019] are also employed for improving liquid tracking in re-
gions of interest. Using adaptive mesh elements is also common in
simulation of diverse physical phenomena such as cloth [Narain
et al. 2012], paper folding and tearing [Narain et al. 2013], fractures
[Molino et al. 2004], elastoplastic materials [Wicke et al. 2010], and
multiphase fluids [Misztal et al. 2012].

Surface Tension. For Eulerian simulations, Kang et al. [2000] pro-
vided a popular method to calculate the necessary boundary condi-
tions by incorporating pressure jumps into the Ghost Fluid method,
while Müller et al. [2003] discussed surface tension with Smooth Hy-
drodynamic Particles. An inherent challenge to adding surface ten-
sion, however, is the increased restriction in time step size. Volume-
preserving mean curvature flow in calculating the boundary condi-
tions was used to effectively reduce the timestep restriction from
O(∆x3/2) back to O(∆x) [Sussman and Ohta 2009]. Several meth-
ods also explored fully or partially decoupling surface tension from
fluid pressure forces. Cohen and Molemaker [2004] utilized several
surface tension-driven advection sub-steps in one simulation step.
Thürey et al. [2010] decoupled surface tension by performing a
mesh-based wave simulation at every frame to simulate capillary
waves and to increase stability. Since surface tension phenomena
are most prominent in small scale liquids, other specialized tech-
niques have been proposed to simulate specific phenomena. Wang
et al. [2005] explored the simulation of contact angles on the solid-
liquid interface by the use of a virtual level set which penetrates
the solid surface. Methods for froth [Cleary et al. 2007; Kim et al.
2010], foam [Kim et al. 2007], and bubbles [Da et al. 2015] also make
use of surface tension forces to increase simulation fidelity. More
recently, [Batty et al. 2012] used a reduced order model to simulate
the dynamics of thin sheets of viscous incompressible liquid with
surface tension incorporated by nonlinear forces by minimizing the
discrete surface areas. The surface-only liquid simulation by Da et
al. [2016] deals with such settings, describes the liquid with only the
triangle mesh as a Lagrangian representation of the liquid surface,
and enforces the incompressibility constraint accordingly.

2.1 Cut-Cells For Solid Embedded Geometries
We directly extend the cut-cells method [Azevedo et al. 2016], which
supports accurate handling of sub-grid information in potentially
coarse resolutions. Hence, we will detail its analysis of solid bound-
ary conditions, which is relevant for this work. To generate cut-cells,
regular grid cells are intersected with obstacles embedded in the
simulation, and a single regular cell can be potentially subdivided
into many cut-cells. Each cut-cell will store its own pressure and ve-
locity, and arbitrarily small gaps and thin meshes can be represented
in a topologically correct way.

(a)
(b)

Fig. 4. (a): A diagram of a 2-D cut cell with different components highlighted.
Purple: grid vertices, yellow: edge vertices, gray: geometry vertices. The cell
is connected to the cell below via edge Ej , thus a pressure gradient is
calculated with pi and pj . (b): An illustration of a 3D cut cell, with the
additional face vertices in blue and the geometry faces highlighted.

2.1.1 Cut-Cells Structures. We further introduce the categorization
of various cut-cells sub-components - vertices, edges and faces -
which will be referenced by our extended cut-cell method. Cut-cell
vertices are categorized by their spatial location as

• A grid vertex is a vertex that coincides with a vertex of the
underlying regular grid;

• An edge vertex is a vertex that simultaneously lies on an edge
of the regular grid and on the embedded geometry;

• A face vertex is a vertex that simultaneously lies on a face of
the regular grid and on the embedded geometry 1;

• A geometry vertex refers to a vertex that lies exclusively on
the embedded geometry.

Cut-cell boundary structures - represented by edges in 2-D and faces
in 3-D - are also categorized by their spatial locations as

• A cut-cell grid edge (2-D) or grid face (3-D) refers to an edge/face
that coincides with the corresponding element on the underly-
ing regular grid. These structures are formed when a regular
cell is intersected with the embedded geometry. Two cut-cells
that share the same grid edge (2-D) or grid face (3-D) have
connected pressure samples. We further refer the collection
of those elements contained in a particular cell by ΩG .

• A cut-cell geometry edge (2-D) or geometry face (3-D) refers to
an edge/face which exclusively lies on the embedded geome-
try. These structures are usually not aligned with the regular
grid and we further refer to the collection of those elements
contained in a particular cell as ΩB

2.

2.1.2 Boundary Conditions for Embedded Solid Geometries. The cut-
cell method employs a finite-volume discretization of the pressure

1Face vertices do not exist for 2-D.
2Grid and geometry edges could also be represented in 3-D, but these structures are
not crucial for the method’s explanation.
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Laplacian as∫
ΩG

∇p · n dS +

∫
ΩB

∇p · n dS =

ρ

∆t

∫
ΩG

u∗ · n dS +
ρ

∆t

∫
ΩB

u∗ · n dS, (1)

where p denotes the pressure field enforcing incompressibility, n is
the cell’s boundary normal, u∗ is the velocity field after advection, ρ
and ∆t are the fluid density and time-step size, respectively. Notice
that we distinguish between integrals discretized over grid aligned
boundaries (ΩG ) and non-grid aligned boundaries (ΩB ).
Pressure gradients integrated along an immersed solid bound-

ary can be factored out using the free-slip condition. Thus, the
second term on the left-hand side of Equation (1) is omitted when
ΩB represents solid boundaries. However, discrete pressure gra-
dients across internal regular faces ΩG still have to be accounted
for. Placing pressure samples at the centroids of cut-cells will re-
sult in gradients that are non-orthogonal relative to cell boundary
normals (Figure 5 (a)) and require quadratic interpolation to keep
the finite volume discretization consistent [Johansen and Colella
1998; Schwartz et al. 2006]. The orthogonality relationship between
the discrete operators is then lost and the system is not symmet-
ric positive definite anymore [Batty 2017]. Thus, previous works
[Azevedo et al. 2016; Ng et al. 2009] repositioned pressure samples
to lie on the centroids of regular grids (Figure 5 (b)). Conveniently,
this simplification still maintains a second-order convergence for
pressure values and first-order for gradients, even in cases where
pressure locations are located inside solid obstacles.

(a) CC Centroids (b) GC Centroids (c) GFM (d) Ours

Fig. 5. Possible pressure samples placements for modelling immersed bound-
aries. Blue cells represent the fluid phase, grey cells are solid boundaries
and white cells represent the air phase. Pressure samples at centroids of
cut-cells [Johansen and Colella 1998] (a); pressure samples at centroids of
the regular grid cell [Azevedo et al. 2016] (b); GFM enforces zero pressure
at the surface, discarding cut-cell pressure samples outside of the liquid (c);
our method positions pressure samples at iso-values (d).

In order to demonstrate clear intuitive illustrations, we will re-
strict discretizations derivations to 2-D. Since the solid boundaries,
and subsequently cut-cells, are assumed to be piece-wise linear,
we can discretize integrals in Equation (1) by assuming the inte-
grated values to be constant for each edge. Hence, Equation (1) is
discretized for the i-th cell as∑

Ej ∈Ωi
G

∥Ej ∥ (pi − pj ) =
−ρ∆x

∆t

∑
E∈Ωi

∥Ej ∥ (u∗Ej · nEj ) (2)

where Ωi = Ωi
G ∪ Ωi

B , Ej and | |Ej | | are the j-th edge and its length,
pi is the i-th cell pressure value, pj is the neighboring cell pressure
value connected to the j-th cut-cell grid edge, and u∗Ej and nEj are

the discrete post-advection velocities and normals associated with
the edge. The symbols of Equation (2) are visualized in Figure 4.
The resulting linear system (Table 1 in [Azevedo et al. 2016]) is
symmetric positive definite and can be readily solved by Conjugate
Gradient algorithms.

2.1.3 Boundary Respecting Interpolants. Besides storing edge (2-D)
or face (3-D) velocities, cut-cells also make use of vertex velocities.
A vertex velocity is obtained after averaging cut-cells components
connected to it, usually after the pressure projection step. Repre-
senting velocities on vertices allows the use of Spherical Barycentric
Coordinates (SBC) [Langer et al. 2006] to interpolate the velocities
for evaluating the advection step. The SBC is a boundary respecting
interpolant, which can correctly model velocity profiles close to
interfaces, generating path-lines that do not cross object geometries.
For further implementation details on how to compute free-slip and
no-slip velocities, we refer to [Azevedo et al. 2016].

3 AN EXTENDED CUT-CELL METHOD FOR SOLID AND
LIQUID EMBEDDED BOUNDARIES

The Hybrid FLIP method [Zhu and Bridson 2005] employs particles
to solve the advection step and to represent liquid surfaces, while
incompressibility is enforced on the grid. By sampling several parti-
cles per-cell, the FLIP solver is able to track implicit surfaces with
a higher resolution than the pressure solver itself. It is a common
practice to calculate grid-based signed distance functions from the
particle positions, and explicit liquid meshes are usually obtained by
marching cubes. We assume that the air phase is neglected (p = 0)
during the simulation, since a great portion of the visible phenom-
ena happens because of the liquid movement itself. This assumption
requires extrapolation of velocities from the liquid to the air phase
so particles can be correctly transported during advection. The
described simulation setup will yield liquid surfaces that are not
aligned with the grid and hence need special treatment.
The Ghost Fluid Method (GFM) [Fedkiw et al. 1999] provides

efficient embedding of non-conforming liquid surfaces inside reg-
ular grids. It avoids voxelized pressure artifacts by placing ghost
values outside liquids and inside the air phase for each discretized
gradient. The ghost pressure values are computed to enforce the
zero pressure condition at the exact surface location, extrapolating
pressures linearly towards the liquid-air interface. Boundary con-
ditions are discretized with symmetric positive definite Laplacian
matrices, which exhibit second-order accuracy for values and first-
order for gradients [Fedkiw et al. 1999]. The GFM is widely adopted
in computer graphics pipelines due to its efficiency, robustness,
convergence and simplicity of implementation.

However, the Ghost Fluid Method cannot capture details smaller
than a grid cell. If a cell center is outside the liquid surface, the GFM
automatically tags it as an air cell (Figure 5 (c)), and the solver in-
correctly ignores water regions outside cell centers. The mismatch
between the pressure degrees of freedom represented by the grid
and the discrete surface will result in missing details or permanent
artifacts, especially for droplets pinching-off the surface, thin sheet
splashes, pockets of air entrapped by the liquid, and narrow gaps
in the surrounding solid obstacles. Additionally, velocities are ex-
trapolated indistinguishably to the air or solid regions, violating

ACM Trans. Graph., Vol. 39, No. 6, Article 169. Publication date: December 2020.



169:6 • Y. Chen, J. Meier, B. Solenthaler, V. C. Azevedo

Fig. 6. Dragon in a liquid simulation. Top: GFM, bottom: ours. Our method reliably preserves the geometry at the solid-liquid interface, preventing voxelization
artifacts near the dragon.

incompressibility. Unless explicitly solved with another pressure
projection [Rasmussen et al. 2004], the extrapolation will deterio-
rate the volume of fluids in areas close to free surfaces or embedded
obstacles.

3.1 A Novel Iso-Surface Poisson Solver
Our goal is to extend previous cut-cells methods to handle liquid
interface tracking using a higher resolution than the pressure solver
itself. For doing so, we want to keep track of all sub-grid liquid pres-
sure samples stored on cut-cells, yielding a topologically correct
discretization. In contrast to solids, liquids impose Dirichlet condi-
tions (p = 0), causing non-vanishing normal pressure gradients at
the liquid-air interface. Therefore, the pressure solver needs to eval-
uate gradients across non-grid aligned boundaries, and the integral
of Equation (1) over ΩB does not vanish. To evaluate this pressure
gradient integral, pressure samples inside the liquid are required.
Hence, shifting pressures locations to centroids of regular cells - as
previous cut-cell approaches - would not yield a valid discretization
of the liquid-air pressure gradient.

To solve these limitations, we developed a novel iso-surface Lapla-
cian solver that correctly embeds non-grid aligned Dirichlet condi-
tions while preserving symmetry and positive definiteness of the
discrete operators. Our method derives from the intuition that with-
out surface tension, the normal pressure gradient does not vary
tangentially across the liquid interface (Figure 9). Thus, if we sim-
ilarly to GFM assume that the pressures vary linearly along the
normal direction of the liquid-air interface, we can find a per cut-
cell iso-distanceϕi from the liquid surface where the pressure values
are identical. This intuition allows us to reduce several pressure
samples along the same iso-distance to a single variable, which re-
sults in a method that effectively stores a single pressure per cut-cell.
Experiments shown in the supplementary material demonstrate that

our method converges with second-order accuracy for values, and
first-order accuracy for gradients.
Our iso-surface Laplacian solver models pressure samples that

are always inside the liquid phase. This property enables the dis-
cretization of free-surface pressure gradients aligned with liquid-air
interface normals, as further detailed in Section 3.3. Interestingly,
our method represents a single pressure sample with multiple physi-
cal locations, depending on the gradient being evaluated, as shown
in Figure 7. Notice that while the pressure positions change rela-
tively inside a cut-cell, their gradients are still orthogonal to the cell
boundary. This constraint, along with a linearly varying pressure
profile at the normal direction of the liquid-air interface, guarantees
the symmetry and positive definiteness of our discrete operators.
The next Section details how iso-distances are computed per cut-cell,
and in Section 3.3 we demonstrate how these values are used to
discretize the pressure gradients.

3.2 Computing Cut-Cell Iso-Distances
Our solver defines discontinuous iso-distance values per cut-cell in
order to discretize pressure gradients, which is enabled by pressure
samples inside a same cut-cell referring to the same iso-distance.
While one could simply adopt a single iso-distance for the whole
liquid surface, that would hinder the discretization accuracy. A
single iso-distance assumption positions pressure gradient centroids
disregarding discrete velocity sample positions, which are assumed
to lie on the centroid of grid edges (2-D) or grid faces (3-D). In
Figure 7, we compare discretizations between continuous (a) and
discontinuous (b) iso-distance values.
In staggered grids, matching the velocity and pressure gradient

positions enhances the stability of the method [Harlow and Welch
1965]. Thus, it is desirable that all iso-distance values defined per
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(a) Uniform iso-distances (b) Discontinuous iso-distances

Fig. 7. Placement of pressure samples across different cells: in (a), if a
single iso-surface is used for every cell, certain samples cannot be properly
placed (red dashed circles), compromising the accuracy of the pressures;
in (b), varying the iso-distance between cells brings more flexibility to the
placement of the pressure samples.

cut-cell minimize

argmin
ϕi

cells∑
i

edges∑
j

| |x∇pj (ϕi ) − xuj | |22

s.t. ϕmin
i < ϕi < 0,

(3)

where ϕi is the iso-distance of the i-th cell, x∇pj (ϕi ) is the center
position of the j-th pressure gradient normal to the cell boundary,
xuj the position of the staggered velocity, and ϕmin

i the minimum
iso-distance value for the i-th cell. Changing ϕi values will shift
pressure gradients’ center locations, while velocity locations are
kept fixed. Assuming that the signed distance value is negative
inside the liquid, the iso-distance ϕi is constrained to positions that
are both inside the liquid (ϕi < 0) and the cut-cell (ϕi > ϕmin

i ). The
optimal solution of Equation (3) has to be computed considering all
cut-cells simultaneously and the problem is over-constrained, since
the number of variables and equations are equal to the number of
cut-cells and edges, respectively.
Since the energy function of Equa-

tion (3) is smooth, one could solve
it with an iterative gradient descent
solver [Zhu et al. 1997]. However, solv-
ing this optimization at each time-step
of the flow solver is computationally
inefficient. Thus, we found that in prac-
tice, it is better to approximate the solu-
tion heuristically. We detail our heuris-
tic as follows: The high-resolution liquid tracking grid is queried by
a scan ray starting at grid edges centroids, following their normal
direction inside the cut-cell. The inset image shows an example for
two edges in 2D. Scan rays (turquoise arrows) access iso-distances on
the fine-resolution level set grid, storing minimum (solid turquoise
circle) and maximum values (white circles) as one interval. This
interval keeps track of valid iso-distances that are aligned with the
pressure gradient, and thus, are valid iso-distance candidates. After
repeating this step for all grid edges of a single cut-cell, we define
a new per cut-cell interval by discarding minimum and maximum

ranges that do not satisfy all scan ray intervals computed individu-
ally per edge. This step minimizes the occurrence of scan rays not
reaching valid iso-distances (Section 3.3). Finally, ϕi is set to the
middle point of the intersection of the per cut-cell interval. While
we do not guarantee the optimal solution, this heuristic locally mini-
mizes the energy function while also satisfying the hard constraints
imposed by the optimization problem. We provide an extended dis-
cussion and algorithmic details in the supplementary material, in
which we show that the discontinuous approach is indeed more
accurate than its continuous counterpart.

3.3 Discrete Pressure Gradients
We follow the same finite volume formulation as Equation (2), com-
puting pressure gradients over grid (ΩG ) and geometry (ΩB ) edges
(faces in 3-D). However, to compute ΩG pressure gradients, we
need to first find the new pressure locations, which depend on
iso-distances computed per cut-cell. We again make use of scan
ray searches, however this time finding the previously agreed iso-
distance value per cut-cell. If the ray fails to find the iso-distance
value, we use the centroid of the regular cell. Considering the j-th
edge of the i-th cut-cell, two rays on opposite directions are cast,
and the pressure gradient is approximated by∫

Ej
∇p · n dS ≈

−∆x ∥Ej ∥ (pi − pj )

∥xpi − xpj ∥
∀Ej ∈ Ωi

G , (4)

where xpi and xpj are the positions of the pressure samples of
the i-th cell and its j-th pressure neighbor. The term ∆x on the
denominator is necessary to normalize the distance | |xpi − xpj | | to
the interval [0, 1] in the same fashion as ∥Ej ∥. We notice that the
distance between the iso-distance pressure location and the edge
(face in 3-D) centroid may be arbitrarily small and compromise the
numerical stability of the method. In this case, we simply set the
pressure sample in which this happens to zero, since this it is already
close enough to the liquid interface. We used this strategy for all
examples shown in Section 5, discarding gradients in which the
distance between the pressure location and the liquid-air interface
is smaller than 0.1% of the simulation grid size.
The pressure gradient along the liquid-air interface can be simi-

larly discretized, since in the absence of surface tension, the pressure
at the surface is zero. Using finite differences between pressures
that lie at the liquid surface and at the iso-distance results in∫

Ωi
A

∇p · n dS ≈
∑

Ej ∈Ωi
A

∆x ∥Ej ∥ (pi − 0)
ϕi

, (5)

where Ωi
A is the liquid–air boundary for the i-th cut cell. Combin-

ing Equations 4 and 5 yields a linear system for pressures that is
symmetric positive definite. We can verify this by the following
relation for the i-th cut-cell∑

Ej ∈Ωi
G

∥Ej ∥

∥xpi − xpj ∥
−

∑
Ej ∈Ωi

A

∥Ej ∥

ϕi
≥

∑
Ej ∈Ωi

G

∥Ej ∥

∥xpi − xpj ∥
, (6)

where the left-hand side is the sum of all coefficients of the pi
pressure (main diagonal) and the right-hand side is the sum of the
coefficients of the pj neighboring pressures. We highlight again
the importance of having pressure samples inside the liquid phase:
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this guarantees that ϕi values that are always negative, and thus,
Equation (6) holds. Additionally, solid boundaries enforce Neumann
conditions, which do not change the gradient stencils on the discrete
Laplacianmatrix described by our approach. Hence, solids immersed
on liquids are automatically accounted for without modifying the
previous equations.
Thus, the linear system for computing pressures without the

presence of surface tension is∑
Ej ∈Ωi

G

∥Ej ∥ (pi − pj )

∥xpi − xpj ∥
−

∑
Ej ∈Ωi

A

∥Ej ∥ pi

ϕi

=
−ρ

∆t

∑
Ej ∈Ωi

∥Ej ∥ (u∗Ej · nEj ). (7)

The above equation requires per edge post-advection velocities u∗Ej .
To compute those, our algorithm transfers FLIP particle velocities
to all grid edges (faces in 3-D) and geometry vertices, similarly
to [Azevedo et al. 2016]. Once the post-advection velocities are
computed per vertex, they are averaged to become edge (face in 3-
D) velocities, and can be used on the right-hand side of Equation (7).

(a) (b)

Fig. 8. Updating the liquid-air interface (a): For the edges (light blue arrows),
we update in the normal direction. Vertices velocities (dark blue arrows) are
interpolated such that they match the normal component of neighboring
edges (black dashed lines). For vertices on a triple junction (b), the update
direction is tangential to the solid surface (black arrow).

3.4 Updating Velocities to Enforce Incompressibility
After the pressure of each cell is known, we update the velocities to
enforce incompressibility of the grid-aligned boundaries and liquid–
air interfaces. For grid edges, this update uses the modified pressure
sample positions in the discrete gradient as

un+1Ej = u∗Ej +
∆t

ρ

(pi − pj )

∥xpi − xpj ∥
nEj ∀Ej ∈ Ωi

G . (8)

For edges on the liquid-air interface, the pressure gradient is
normal to the liquid surface, hence we only update the velocity in
the normal direction. While one could compute a discrete pressure
gradient for liquid-air interfaces by using Equation (5), this method
can suffer from instabilities when the computed cut-cell iso-distance
is too small. We can exploit our knowledge of cut-cell geometry
to enforce incompressibility in a discrete sense by a method in
which we dub the budget method. In this method, a flux budget is

computed by summing grid edge velocities after projection with
post-advection geometry edge velocities by

Fbi =
∑

Ej ∈Ωi
G

∥Ej ∥ (un+1Ej · nEj ) +
∑

Ej ∈Ωi
B

∥Ej ∥ (un∗Ej · nEj ). (9)

We can then redistribute this flux budget evenly to all liquid-air
edges, yielding a discrete divergence

∑
Ej ∈Ωi ∥Ej ∥ (un+1Ej

· nEj ) that
sums up exactly to be zero. That is, for each edge Ej we compute a
correction to liquid-air post-advection velocities as

un+1Ej = un∗Ej −
Fbi∑

Ej ∈Ωi
A
∥Ej ∥

∀Ej ∈ Ωi
A . (10)

We notice that this equation might cause issues when only a tiny
portion of the cut-cell is a liquid-air interface. Iterative pressure
solvers are limited by their residual tolerance values, and thus the
sum of the discrete divergence will not be exactly zero for each cell.
This error will be amplified by the small liquid-air interface, causing
the budget method velocities to overshoot. Thus, our solver clamps
the magnitude of the correction to not be larger than

���∆tpiρϕi

���, which
effectively relaxes incompressibility in favor of stability.
Once the per-edge post-projection velocities are computed, we

need to accordingly update vertex velocities. While grid vertex
velocities are simply averaged from the connected cut-cell structures,
edge (face in 3-D) and geometry vertices require special attention.
These vertices are connected to edges (faces in 3-D) which have
normal-oriented fluxes. We employ a Least-Squares fitting strategy
as [Azevedo et al. 2016; Klingner et al. 2006], which combines several
normal contributions to form a full 2-D or 3-D velocity. This velocity
is used to compute only the normal velocity of a vertex, since the
tangential velocities are kept to be the same as the ones transferred
by the FLIP particles. If the vertex is on a triple junction between
the air, liquid and solid (Figure 8), we modify its normal to remain
in tangent direction of the solid normal, so the correction does not
create velocities that penetrate the solid obstacle.

4 SURFACE TENSION
As noticed by previous works [Sussman and Ohta 2009], surface
tension forces are more stable if integrated by the mean curvature
flow of the liquid interface as

∂x
∂t
= σ∇2x ∀x ∈ ΩA, (11)

where σ is the surface tension value and ΩA is the liquid-air inter-
face. We use an extension of the original method which runs directly
on triangle meshes, proposed by [Thürey et al. 2010]. The liquid-air
interface is first updated implicitly by solving Equation (11). Then,
the difference between the updated and the original mesh positions
are used to compute pressure values at the original mesh.
In the presence of surface tension, the surface pressure is no

longer constant and the pressure iso-surfaces do not align with
the signed distance field (Figure 9). Furthermore, the change in
pressure also limits our knowledge about values underneath the
surface, making it challenging to relocate the pressure samples such
that they share one value in a cell. Thus, Equation (7) is no longer
sufficient for modelling pressure values at the iso-surface. We notice
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Fig. 9. Without surface tension, pressure iso-values are parallel to the free
surface (left). With surface tension (right), the pressure iso-surfaces do not
align with the surface and the iso-surface assumption no longer holds. Given
a small enough region, both pressure fields can be approximated with linear
functions, and our assumption of pressure gradients on the surface becomes
a good approximation.

that our iso-surface Laplacian solver models pressures as functions
that vary linearly along the liquid-air interface normal directions.
A pressure sample p̂i can be written in terms of the pressure value
of closest point at the liquid interface as

p̂i = aiϕi + q (12)

where ai is the rate in which the pressure gradient varies away
from the liquid-air interface, and q is the pressure value at closest
point on the surface. Notice that the original pressures relate to p̂i
as pi = aiϕi .

Directly replacing this linear relation into Equation (7) will yield
a coupled system for the pressures at the surface and the ones inside
the liquid. Solving this coupled system may induce instability issues
due fast travelling waves at the liquid surface [Thürey et al. 2010].
Thus, instead of solving for the pressure p̂i directly, we decouple the
solution by first solving for q at the liquid mesh using Equation (11).
Once surface pressures are computed, these can be added to the
cut-cell pressures and will conveniently vanish in the liquid-air
interface normal direction as

∫
Ωi
A

∇p · n ≈
∑

Ej ∈Ωi
A

∥Ej ∥ (p̂i − q)

ϕi

=
∑

Ej ∈Ωi
A

∥Ej ∥ (pi + q − q)

ϕi
=

∑
Ej ∈Ωi

A

∥Ej ∥ pi

ϕi
. (13)

In Figure 10, we show that a q variable is added for every pressure
sample point used on the discretization of gradients. For the j-th
edge of the i-th cell, samples qji and q

i
j are added inside and outside

the cut-cell, respectively. Substituting these in Equation (7) and
moving the q variables to the right-hand side yields the following
system∑

Ej ∈Ωi
G

∥Ej ∥
(
pi − pj

)
∥xpi − xpj ∥

−
∑

Ej ∈Ωi
A

∥Ej ∥ pi

ϕi

= −
∑

Ej ∈Ωi
G

∥Ej ∥
(
q
j
i − qij

)
∥xpi − xpj ∥

−
ρ

∆t

∑
Ej ∈Ωi

∥Ej ∥ (u∗Ej · nEj ). (14)

This equation only differs from Equation (7) by an extra term on
the right-hand side. Once pressures are computed with the above

equations, we can then use the surface tension modified pressures
to update the grid face velocities with Equation (8). To update the
surface velocity with surface tension, an extra tangential pressure
gradient, which can be calculated for each vertex with neighboring
vertices, is added to the vertices. Note that for velocity updates in
the normal direction, Equation (13) is exactly identical in form to
Equation (5). This means that if we use pressure modified by the
surface tension, the same steps in Section 3.4 can be used.

Fig. 10. To solve fluids with surface tension, an extra value is stored at each
pressure sample. Note that the q term can vary within the cut cell.

Algorithm 1: Extended Liquid Cut-Cells Pipeline
1 Transport particles and update liquid position
2 Generate cut-cell meshes
3 Splat particle velocities to the vertices of the mesh and grid
4 Compute Iso-Distances per Cut-cell
5 if surface tension then
6 Solve for q on liquid surface [Thürey et al. 2010]
7 Interpolate per-edge (face 3-D) velocities from vertices
8 Solve pressures with Equation (14)
9 Project grid edge (faces 3-D) velocities

10 if surface tension then
11 Update tangential velocity of liquid–air interface
12 Compute budget method
13 Compute free surface edge (faces 3-D) velocities
14 Interpolate per-vertex velocities from edges (faces 3-D)
15 Update particle velocities with SBC

5 RESULTS

5.1 Implementation
Algorithm 1 summarizes the steps to perform one time-step with our
method. The simulations were run on a standard desktop with an
Intel i7-7700K CPUwith 32 gigabytes of RAM, and the Poisson solver
was implemented in CUDA and ran on an NVIDIA GeForce GTX
1080Ti. Table (1) summarizes our timing results of our extended
cut-cells, while also depicting the resolution for tracking liquid
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surfaces. We refer the reader to the accompanying video for better
visualization of the presented results.

5.2 Simulation Results
Comparisons with GFM. In Figure 2, we show a side-by-side com-

parison between GFM and our extended cut-cells method. Three
drops of varying sizes are initialized above a liquid basin, splashing
as they fall into the liquid below. This example is discretized with
varying grid resolutions (16×8×12, 32×16×24, 64×32×48, from left
to right). As expected, at coarse resolutions, GFM is unable to cap-
ture small droplets, resulting in perceptible hanging artifacts. Our
extended cut-cell method works even for coarse setups and small
droplets, only suffering from dissipation when the grid resolution
is insufficient.

Interaction with complex objects. Figure 6 shows a dragon mesh
combined with a dam-break scene. Our extended cut-cell method
is able to faithfully preserve the geometry at the solid–liquid inter-
face, preventing voxelization artifacts near the dragon. Fluid further
away from the dragon, however, behaves similarly for both methods.
Figure 11 shows a water drop colliding with the dragon mesh and
breaking into a thin sheet on impact. In this example, the level set
grid is much finer than the simulation grid, and severe voxelization
artifacts are noticeable near the obstacle with GFM. Furthermore,
thin liquid sheets, which make up most of the simulation, are as-
sumed to have zero pressure, leading to incompressibility not being
properly maintained, which is especially apparent at the domain
boundaries. When such sheets are represented with cut-cells, mean-
ingful pressure values are calculated to ensure incompressibility,
producing results that look more natural. Figure 3 features a liquid
flowing out of an array of narrow slits. In GFM, the slits can only be
detected when they are directly aligned with the grid cells, leading
them to be erroneously simulated as fewer, wider gaps in the wall.
Our method, on the other hand, manages to detect these gaps, al-
lowing the liquid to flow through all slits. Due to the coarseness of
the simulation, artifacts due to extrapolation also become apparent
with GFM, manifesting as floating blobs in the simulation.

Surface tension. We validate our surface tension approach in Fig-
ure 12, which shows a simple scene with a cube in zero gravity with
a surface tension value of σ = 5× 10−4. The liquid attempts to mini-
mize its own surface area, gradually becoming rounder and causing
surface waves in the process. In a similar but more complex scenario,
Figure 13 shows the same setup, this time with an armadillo-shaped
liquid. The left most picture in Figure 1 depicts a liquid splash in
shallow water with surface tension value σ = 2 × 10−4. Finally,
Figure 14 simulates a water drop breaking into smaller droplets
upon impact with a spike. Droplet break-up into sub-cell elements
interacting with such complex obstacles is particularly challenging
to capture with traditional approaches.

6 CONCLUSIONS AND FUTURE WORK
In this work, we extended the cut-cells method [Azevedo et al. 2016]
to include free-surface boundary conditions and surface tension.
This addition allows intricate simulations of surface phenomena at a
sub-grid resolution. Furthermore, due to the topological awareness

of cut-cells, surface tension can be incorporated elegantly into the
simulation, allowing potential for complex simulations at a lower
grid resolution. In terms of the overall liquid results, we demon-
strated that our method shows a clear advantage over traditional
GFM in terms of simulation precision and versatility. Solid surface
topology, as well as detailed meshes and complex topological struc-
tures, can be properly captured and simulated without requiring
unreasonable grid resolutions. Numerical experiments in our sup-
plemental material also show that our novel Poisson solver achieves
second-order accuracy for the pressure values and first-order for
pressure gradients.

However, our method is a first attempt at capturing liquids with
cut-cells, and some limitations are also present in our results. Firstly,
due to the varying sizes of the cut-cells, it is known for FLIP to be
unstable around solid boundaries [Azevedo et al. 2016] and PICmust
be used in such cases. This leads to some dissipation around the
solid boundaries. Recent advances in advection, such as APIC [Jiang
et al. 2015] and PolyPIC [Fu et al. 2017] could potentially be used
to solve the instability and dissipation. Due to the implicit way we
derive surface tension, our simulations exhibit greater stability than
directly finding the surface pressure using the mean curvature. How-
ever, some surface tension phenomena cannot be properly simulated
when larger time-steps are taken. For example, Figure 14 requires
a small time-step in order to correctly simulate the breaking-up of
the droplets. Furthermore, the discrepancy of resolution between
the simulation grid and the level set means that a smaller time-step
has to be used than if no discrepancy existed. [Thürey et al. 2010]
addresses these issues by evolving the mesh via smoothing or simu-
lating surface waves to achieve a stable approximation of surface
tension. This is currently not feasible in our method, since modi-
fying the mesh can cause particles to be outside the liquid surface,
causing wrong velocities to be interpolated in such cases.
While this was not the focus of this work, the simulation time

could be greatly improved. Table 2 shows the running time for each
individual step of our method. Our cut-cells implementation is not
optimized for speed, thus meshes are slow to generate and update.
We believe that using the state-of-the-art cut-cells framework [Tao
et al. 2019] would greatly improve the performance of our method.
The use of an explicit mesh also has additional disadvantages, such
as various numerical instabilities, as well as being subject to bi-
ases in the surface extraction, such as the curling boundaries in
the splash of Figure 1. We notice that computing iso-values and
pressure sample positions has little impact on the overall time spent
per frame. Thus, a potential way to improve on the current method
is to directly use the level set to infer connectivity in a grid cell,
employing our cut-cells only as a high-level concept for adaptive
simulation. Other directions for further research include incorpo-
rating alternative simulation techniques, such as the use of stream
functions [Ando et al. 2015] or modelling air bubbles [Goldade and
Batty 2017]. Nevertheless, we believe that our method laid down a
solid foundation for future work in more precise and adaptive liquid
representations.
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Fig. 15. Reconstruction error of the values (left) and gradients (right) of
a function (“Peaks” in the supplementary paper) with Dirchlet boundary
conditions. Our method performs similarly to GFM.
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performance.
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